
adagrasp.cs.columbia.edu
Preview meta tags from the adagrasp.cs.columbia.edu website.
Linked Hostnames
6- 1 link toarxiv.org
- 1 link togithub.com
- 1 link tosubmagr.github.io
- 1 link towww.cs.columbia.edu
- 1 link towww.linkedin.com
- 1 link tozhenjiaxu.com
Search Engine Appearance
AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy
This paper aims to improve robots’ versatility and adaptability by allowing them to use a large variety of end-effector tools and quickly adapt to new tools. We propose AdaGrasp, a method to learn a single grasping policy that generalizes to novel grippers. By training on a large collection of grippers, our algorithm is able to acquire generalizable knowledge of how different grippers should be used in various tasks. Given a visual observation of the scene and the gripper, AdaGrasp infers the possible grasping poses and their grasp scores by computing the cross convolution between the shape encodings of the input gripper and scene. Intuitively, this cross convolution operation can be considered as an efficient way of exhaustively matching the scene geometry with gripper geometry under different grasp poses (i.e., translations and orientations), where a good “match” of 3D geometry will lead to a successful grasp. We validate our methods in both simulation and real-world environment. Our experiment shows that AdaGrasp significantly outperforms the existing multi-gripper grasping policy method, especially when handling cluttered environments and partial observations.
Bing
AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy
This paper aims to improve robots’ versatility and adaptability by allowing them to use a large variety of end-effector tools and quickly adapt to new tools. We propose AdaGrasp, a method to learn a single grasping policy that generalizes to novel grippers. By training on a large collection of grippers, our algorithm is able to acquire generalizable knowledge of how different grippers should be used in various tasks. Given a visual observation of the scene and the gripper, AdaGrasp infers the possible grasping poses and their grasp scores by computing the cross convolution between the shape encodings of the input gripper and scene. Intuitively, this cross convolution operation can be considered as an efficient way of exhaustively matching the scene geometry with gripper geometry under different grasp poses (i.e., translations and orientations), where a good “match” of 3D geometry will lead to a successful grasp. We validate our methods in both simulation and real-world environment. Our experiment shows that AdaGrasp significantly outperforms the existing multi-gripper grasping policy method, especially when handling cluttered environments and partial observations.
DuckDuckGo
AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy
This paper aims to improve robots’ versatility and adaptability by allowing them to use a large variety of end-effector tools and quickly adapt to new tools. We propose AdaGrasp, a method to learn a single grasping policy that generalizes to novel grippers. By training on a large collection of grippers, our algorithm is able to acquire generalizable knowledge of how different grippers should be used in various tasks. Given a visual observation of the scene and the gripper, AdaGrasp infers the possible grasping poses and their grasp scores by computing the cross convolution between the shape encodings of the input gripper and scene. Intuitively, this cross convolution operation can be considered as an efficient way of exhaustively matching the scene geometry with gripper geometry under different grasp poses (i.e., translations and orientations), where a good “match” of 3D geometry will lead to a successful grasp. We validate our methods in both simulation and real-world environment. Our experiment shows that AdaGrasp significantly outperforms the existing multi-gripper grasping policy method, especially when handling cluttered environments and partial observations.
General Meta Tags
3- titleAdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy
- charsetutf-8
- viewportwidth=1000
Open Graph Meta Tags
4- og:urlhttps://adagrasp.cs.columbia.edu/
- og:typewebsite
- og:titleAdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy
- og:descriptionThis paper aims to improve robots’ versatility and adaptability by allowing them to use a large variety of end-effector tools and quickly adapt to new tools. We propose AdaGrasp, a method to learn a single grasping policy that generalizes to novel grippers. By training on a large collection of grippers, our algorithm is able to acquire generalizable knowledge of how different grippers should be used in various tasks. Given a visual observation of the scene and the gripper, AdaGrasp infers the possible grasping poses and their grasp scores by computing the cross convolution between the shape encodings of the input gripper and scene. Intuitively, this cross convolution operation can be considered as an efficient way of exhaustively matching the scene geometry with gripper geometry under different grasp poses (i.e., translations and orientations), where a good “match” of 3D geometry will lead to a successful grasp. We validate our methods in both simulation and real-world environment. Our experiment shows that AdaGrasp significantly outperforms the existing multi-gripper grasping policy method, especially when handling cluttered environments and partial observations.
Link Tags
1- stylesheetassets/css/main.css
Links
6- https://arxiv.org/abs/2011.14206
- https://github.com/columbia-ai-robotics/adagrasp
- https://submagr.github.io
- https://www.cs.columbia.edu/~shurans
- https://www.linkedin.com/in/beichun-qi