
adamgetchell.org/posts/can-ligo-detect-graviton
Preview meta tags from the adamgetchell.org website.
Linked Hostnames
11- 3 links toblogs.discovermagazine.com
- 3 links togithub.com
- 2 links toadamgetchell.org
- 2 links totwitter.com
- 2 links towww.mathjax.org
- 1 link todiscourse.gohugo.io
- 1 link togohugo.io
- 1 link tokeybase.io
Search Engine Appearance
Can LIGO Detect A Graviton?
A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
Bing
Can LIGO Detect A Graviton?
A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
DuckDuckGo
Can LIGO Detect A Graviton?
A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
General Meta Tags
10- titleCan LIGO Detect A Graviton? | Adam's Entropy
- charsetutf-8
- X-UA-CompatibleIE=edge,chrome=1
- viewportwidth=device-width,minimum-scale=1
- descriptionA lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
Open Graph Meta Tags
4- og:titleCan LIGO Detect A Graviton?
- og:descriptionA lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
- og:typearticle
- og:urlhttps://adamgetchell.org/posts/can-ligo-detect-graviton/
Twitter Meta Tags
3- twitter:cardsummary
- twitter:titleCan LIGO Detect A Graviton?
- twitter:descriptionA lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
Item Prop Meta Tags
6- nameCan LIGO Detect A Graviton?
- descriptionA lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
- datePublished2011-12-28T17:51:16-08:00
- dateModified2011-12-28T17:51:16-08:00
- wordCount300
Link Tags
1- stylesheet/ananke/css/main.min.css
Links
18- http://blogs.discovermagazine.com/cosmicvariance
- http://blogs.discovermagazine.com/cosmicvariance/2007/04/25/the-difficult-childhood-of-gravitational-waves
- http://blogs.discovermagazine.com/cosmicvariance/2009/07/05/catching-the-waves
- http://www.mathjax.org
- https://adamgetchell.org