adamgetchell.org/posts/can-ligo-detect-graviton

Preview meta tags from the adamgetchell.org website.

Linked Hostnames

11

Search Engine Appearance

Google

https://adamgetchell.org/posts/can-ligo-detect-graviton

Can LIGO Detect A Graviton?

A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.



Bing

Can LIGO Detect A Graviton?

https://adamgetchell.org/posts/can-ligo-detect-graviton

A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.



DuckDuckGo

https://adamgetchell.org/posts/can-ligo-detect-graviton

Can LIGO Detect A Graviton?

A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.

  • General Meta Tags

    10
    • title
      Can LIGO Detect A Graviton? | Adam's Entropy
    • charset
      utf-8
    • X-UA-Compatible
      IE=edge,chrome=1
    • viewport
      width=device-width,minimum-scale=1
    • description
      A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
  • Open Graph Meta Tags

    4
    • og:title
      Can LIGO Detect A Graviton?
    • og:description
      A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
    • og:type
      article
    • og:url
      https://adamgetchell.org/posts/can-ligo-detect-graviton/
  • Twitter Meta Tags

    3
    • twitter:card
      summary
    • twitter:title
      Can LIGO Detect A Graviton?
    • twitter:description
      A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
  • Item Prop Meta Tags

    6
    • name
      Can LIGO Detect A Graviton?
    • description
      A lecture given 10/27/08 by Professor Freeman Dyson of the Institute of Advanced Studies at Princeton, in honor of the 100th anniversary of the founding of the University of California, Davis. $$E=\left(\frac{c^{2}}{32\pi G}\right)\omega^{2}f^{2}$$ is the energy per gravity wave, where f is the dimensionless amplitude/strain. $$E_{s}=\frac{\hbar\omega^{4}}{c^{3}}$$ is the energy per graviton, taken from $\hbar\omega$ energy times $\frac{\omega^3}{c^3}$ density $$f=\left(32\pi\right)^{\frac{1}{2}}\left(L_{p}\frac{\omega}{c}\right)$$ is the strain per graviton. $$L_{p}=\left(\frac{G\hbar}{c^{3}}\right)^{\frac{1}{2}}=1.4\times10^{-33}cm$$ $$\delta=\left(32\pi\right)^{\frac{1}{2}}L_{p}$$ Gives the linear displacement per graviton.
    • datePublished
      2011-12-28T17:51:16-08:00
    • dateModified
      2011-12-28T17:51:16-08:00
    • wordCount
      300
  • Link Tags

    1
    • stylesheet
      /ananke/css/main.min.css

Links

18