adsabs.harvard.edu/abs/1995ShWav...5..127T

Preview meta tags from the adsabs.harvard.edu website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://adsabs.harvard.edu/abs/1995ShWav...5..127T

Experimental investigation on tunnel sonic boom

Upon the entrance of a high-speed train into a relatively long train tunnel, compression waves are generated in front of the train. These compression waves subsequently coalesce into a weak shock wave so that a unpleasant sonic boom is emitted from the tunnel exit. In order to investigate the generation of the weak shock wave in train tunnels and the emission of the resulting sonic boom from the train tunnel exit and to search for methods for the reduction of these sonic booms, a 1∶300 scaled train tunnel simulator was constructed and simulation experiments were carried out using this facility. In the train tunnel simulator, an 18 mm dia. and 200 mm long plastic piston moves along a 40 mm dia. and 25 m long test section with speed ranging from 60 to 100 m/s. The tunnel simulator was tilted 8° to the floor so that the attenuation of the piston speed was not more than 10 % of its entrance speed. Pressure measurements along the tunnel simulator and holographic interferometric optical flow visualization of weak shock waves in the tunnel simulator clearly showed that compression waves, with propagation, coalesced into a weak shock wave. Although, for reduction of the sonic boom in prototype train tunnels, the installation of a hood at the entrance of the tunnels was known to be useful for their suppression, this effect was confirmed in the present experiment and found to be effective particularly for low piston speeds. The installation of a partially perforated wall at the exit of the tunnel simulator was found to smear pressure gradients at the shock. This effect is significant for higher piston speeds. Throughout the series of train tunnel simulator experiments, the combination of both the entrance hood and the perforated wall significantly reduces shock overpressures for piston speeds ofu<SUB>p</SUB> ranging from 60 to 100 m/s. These experimental findings were then applied to a real train tunnel and good agreement was obtained between the tunnel simulator result and the real tunnel measurements.



Bing

Experimental investigation on tunnel sonic boom

https://adsabs.harvard.edu/abs/1995ShWav...5..127T

Upon the entrance of a high-speed train into a relatively long train tunnel, compression waves are generated in front of the train. These compression waves subsequently coalesce into a weak shock wave so that a unpleasant sonic boom is emitted from the tunnel exit. In order to investigate the generation of the weak shock wave in train tunnels and the emission of the resulting sonic boom from the train tunnel exit and to search for methods for the reduction of these sonic booms, a 1∶300 scaled train tunnel simulator was constructed and simulation experiments were carried out using this facility. In the train tunnel simulator, an 18 mm dia. and 200 mm long plastic piston moves along a 40 mm dia. and 25 m long test section with speed ranging from 60 to 100 m/s. The tunnel simulator was tilted 8° to the floor so that the attenuation of the piston speed was not more than 10 % of its entrance speed. Pressure measurements along the tunnel simulator and holographic interferometric optical flow visualization of weak shock waves in the tunnel simulator clearly showed that compression waves, with propagation, coalesced into a weak shock wave. Although, for reduction of the sonic boom in prototype train tunnels, the installation of a hood at the entrance of the tunnels was known to be useful for their suppression, this effect was confirmed in the present experiment and found to be effective particularly for low piston speeds. The installation of a partially perforated wall at the exit of the tunnel simulator was found to smear pressure gradients at the shock. This effect is significant for higher piston speeds. Throughout the series of train tunnel simulator experiments, the combination of both the entrance hood and the perforated wall significantly reduces shock overpressures for piston speeds ofu<SUB>p</SUB> ranging from 60 to 100 m/s. These experimental findings were then applied to a real train tunnel and good agreement was obtained between the tunnel simulator result and the real tunnel measurements.



DuckDuckGo

https://adsabs.harvard.edu/abs/1995ShWav...5..127T

Experimental investigation on tunnel sonic boom

Upon the entrance of a high-speed train into a relatively long train tunnel, compression waves are generated in front of the train. These compression waves subsequently coalesce into a weak shock wave so that a unpleasant sonic boom is emitted from the tunnel exit. In order to investigate the generation of the weak shock wave in train tunnels and the emission of the resulting sonic boom from the train tunnel exit and to search for methods for the reduction of these sonic booms, a 1∶300 scaled train tunnel simulator was constructed and simulation experiments were carried out using this facility. In the train tunnel simulator, an 18 mm dia. and 200 mm long plastic piston moves along a 40 mm dia. and 25 m long test section with speed ranging from 60 to 100 m/s. The tunnel simulator was tilted 8° to the floor so that the attenuation of the piston speed was not more than 10 % of its entrance speed. Pressure measurements along the tunnel simulator and holographic interferometric optical flow visualization of weak shock waves in the tunnel simulator clearly showed that compression waves, with propagation, coalesced into a weak shock wave. Although, for reduction of the sonic boom in prototype train tunnels, the installation of a hood at the entrance of the tunnels was known to be useful for their suppression, this effect was confirmed in the present experiment and found to be effective particularly for low piston speeds. The installation of a partially perforated wall at the exit of the tunnel simulator was found to smear pressure gradients at the shock. This effect is significant for higher piston speeds. Throughout the series of train tunnel simulator experiments, the combination of both the entrance hood and the perforated wall significantly reduces shock overpressures for piston speeds ofu<SUB>p</SUB> ranging from 60 to 100 m/s. These experimental findings were then applied to a real train tunnel and good agreement was obtained between the tunnel simulator result and the real tunnel measurements.

  • General Meta Tags

    49
    • title
      Experimental investigation on tunnel sonic boom - ADS
    • apple-mobile-web-app-title
      ADS
    • application-name
      ADS
    • msapplication-TileColor
      #ffc40d
    • theme-color
      #ffffff
  • Open Graph Meta Tags

    6
    • og:type
      article
    • og:title
      Experimental investigation on tunnel sonic boom
    • og:site_name
      ADS
    • og:description
      Upon the entrance of a high-speed train into a relatively long train tunnel, compression waves are generated in front of the train. These compression waves subsequently coalesce into a weak shock wave so that a unpleasant sonic boom is emitted from the tunnel exit. In order to investigate the generation of the weak shock wave in train tunnels and the emission of the resulting sonic boom from the train tunnel exit and to search for methods for the reduction of these sonic booms, a 1∶300 scaled train tunnel simulator was constructed and simulation experiments were carried out using this facility. In the train tunnel simulator, an 18 mm dia. and 200 mm long plastic piston moves along a 40 mm dia. and 25 m long test section with speed ranging from 60 to 100 m/s. The tunnel simulator was tilted 8° to the floor so that the attenuation of the piston speed was not more than 10 % of its entrance speed. Pressure measurements along the tunnel simulator and holographic interferometric optical flow visualization of weak shock waves in the tunnel simulator clearly showed that compression waves, with propagation, coalesced into a weak shock wave. Although, for reduction of the sonic boom in prototype train tunnels, the installation of a hood at the entrance of the tunnels was known to be useful for their suppression, this effect was confirmed in the present experiment and found to be effective particularly for low piston speeds. The installation of a partially perforated wall at the exit of the tunnel simulator was found to smear pressure gradients at the shock. This effect is significant for higher piston speeds. Throughout the series of train tunnel simulator experiments, the combination of both the entrance hood and the perforated wall significantly reduces shock overpressures for piston speeds ofu<SUB>p</SUB> ranging from 60 to 100 m/s. These experimental findings were then applied to a real train tunnel and good agreement was obtained between the tunnel simulator result and the real tunnel measurements.
    • og:url
      https://ui.adsabs.harvard.edu/abs/1995ShWav...5..127T/abstract
  • Twitter Meta Tags

    7
    • twitter:card
      summary_large_image
    • twitter:description
      Upon the entrance of a high-speed train into a relatively long train tunnel, compression waves are generated in front of the train. These compression waves subsequently coalesce into a weak shock wave so that a unpleasant sonic boom is emitted from the tunnel exit. In order to investigate the generation of the weak shock wave in train tunnels and the emission of the resulting sonic boom from the train tunnel exit and to search for methods for the reduction of these sonic booms, a 1∶300 scaled train tunnel simulator was constructed and simulation experiments were carried out using this facility. In the train tunnel simulator, an 18 mm dia. and 200 mm long plastic piston moves along a 40 mm dia. and 25 m long test section with speed ranging from 60 to 100 m/s. The tunnel simulator was tilted 8° to the floor so that the attenuation of the piston speed was not more than 10 % of its entrance speed. Pressure measurements along the tunnel simulator and holographic interferometric optical flow visualization of weak shock waves in the tunnel simulator clearly showed that compression waves, with propagation, coalesced into a weak shock wave. Although, for reduction of the sonic boom in prototype train tunnels, the installation of a hood at the entrance of the tunnels was known to be useful for their suppression, this effect was confirmed in the present experiment and found to be effective particularly for low piston speeds. The installation of a partially perforated wall at the exit of the tunnel simulator was found to smear pressure gradients at the shock. This effect is significant for higher piston speeds. Throughout the series of train tunnel simulator experiments, the combination of both the entrance hood and the perforated wall significantly reduces shock overpressures for piston speeds ofu<SUB>p</SUB> ranging from 60 to 100 m/s. These experimental findings were then applied to a real train tunnel and good agreement was obtained between the tunnel simulator result and the real tunnel measurements.
    • twitter:title
      Experimental investigation on tunnel sonic boom
    • twitter:site
      @adsabs
    • twitter:domain
      ADS
  • Link Tags

    9
    • apple-touch-icon
      /styles/favicon/apple-touch-icon.png
    • canonical
      http://ui.adsabs.harvard.edu/abs/1995ShWav...5..127T/abstract
    • icon
      /styles/favicon/favicon-32x32.png
    • icon
      /styles/favicon/favicon-16x16.png
    • manifest
      /styles/favicon/site.webmanifest

Links

30