
adsabs.harvard.edu/abs/2005PASP..117.1049S
Preview meta tags from the adsabs.harvard.edu website.
Linked Hostnames
5- 42 links toadsabs.harvard.edu
- 3 links towww.si.edu
- 2 links towww.cfa.harvard.edu
- 1 link toadsisdownorjustme.herokuapp.com
- 1 link towww.nasa.gov
Thumbnail
Search Engine Appearance
The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys
We present the photometric calibration of the Advanced Camera for Surveys (ACS). The ACS was installed in the Hubble Space Telescope (HST) in 2002 March. It comprises three cameras: the Wide Field Channel (WFC), optimized for deep near-IR survey imaging programs; the High Resolution Channel (HRC), a high-resolution imager that fully samples the HST point-spread function (PSF) in the visible; and the Solar Blind Channel (SBC), a far-UV imager. A significant amount of data has been collected to characterize the on-orbit performance of the three channels. We give here an overview of the performance and calibration of the two CCD cameras (WFC and HRC) and a description of the best techniques for reducing ACS CCD data. The overall performance is as expected from prelaunch testing of the camera. Surprises were a better-than-predicted sensitivity in the visible and near-IR for both the WFC and HRC and an unpredicted dip in the HRC UV response at ~3200 Å. On-orbit observations of spectrophotometric standard stars have been used to revise the prelaunch estimate of the instrument response curves to best match predicted and observed count rates. Synthetic photometry has been used to determine zero points for all filters in three magnitude systems and to derive interstellar extinction values for the ACS photometric systems. Due to the CCD internal scattering of long-wavelength photons, the width of the PSF increases significantly in the near-IR, and the aperture correction for photometry with near-IR filters depends on the spectral energy distribution of the source. We provide a detailed recipe to correct for the latter effect. Transformations between the ACS photometric systems and the UBVRI and WFPC2 systems are presented. In general, two sets of transformations are available: one based on the observation of two star clusters; the other on synthetic photometry. We discuss the accuracy of these transformations and their sensitivity to details of the spectra being transformed. Initial signs of detector degradation due to the HST radiative environment are already visible. We discuss the impact on the data in terms of dark rate increase, charge transfer inefficiency, and ``hot'' pixel population.
Bing
The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys
We present the photometric calibration of the Advanced Camera for Surveys (ACS). The ACS was installed in the Hubble Space Telescope (HST) in 2002 March. It comprises three cameras: the Wide Field Channel (WFC), optimized for deep near-IR survey imaging programs; the High Resolution Channel (HRC), a high-resolution imager that fully samples the HST point-spread function (PSF) in the visible; and the Solar Blind Channel (SBC), a far-UV imager. A significant amount of data has been collected to characterize the on-orbit performance of the three channels. We give here an overview of the performance and calibration of the two CCD cameras (WFC and HRC) and a description of the best techniques for reducing ACS CCD data. The overall performance is as expected from prelaunch testing of the camera. Surprises were a better-than-predicted sensitivity in the visible and near-IR for both the WFC and HRC and an unpredicted dip in the HRC UV response at ~3200 Å. On-orbit observations of spectrophotometric standard stars have been used to revise the prelaunch estimate of the instrument response curves to best match predicted and observed count rates. Synthetic photometry has been used to determine zero points for all filters in three magnitude systems and to derive interstellar extinction values for the ACS photometric systems. Due to the CCD internal scattering of long-wavelength photons, the width of the PSF increases significantly in the near-IR, and the aperture correction for photometry with near-IR filters depends on the spectral energy distribution of the source. We provide a detailed recipe to correct for the latter effect. Transformations between the ACS photometric systems and the UBVRI and WFPC2 systems are presented. In general, two sets of transformations are available: one based on the observation of two star clusters; the other on synthetic photometry. We discuss the accuracy of these transformations and their sensitivity to details of the spectra being transformed. Initial signs of detector degradation due to the HST radiative environment are already visible. We discuss the impact on the data in terms of dark rate increase, charge transfer inefficiency, and ``hot'' pixel population.
DuckDuckGo

The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys
We present the photometric calibration of the Advanced Camera for Surveys (ACS). The ACS was installed in the Hubble Space Telescope (HST) in 2002 March. It comprises three cameras: the Wide Field Channel (WFC), optimized for deep near-IR survey imaging programs; the High Resolution Channel (HRC), a high-resolution imager that fully samples the HST point-spread function (PSF) in the visible; and the Solar Blind Channel (SBC), a far-UV imager. A significant amount of data has been collected to characterize the on-orbit performance of the three channels. We give here an overview of the performance and calibration of the two CCD cameras (WFC and HRC) and a description of the best techniques for reducing ACS CCD data. The overall performance is as expected from prelaunch testing of the camera. Surprises were a better-than-predicted sensitivity in the visible and near-IR for both the WFC and HRC and an unpredicted dip in the HRC UV response at ~3200 Å. On-orbit observations of spectrophotometric standard stars have been used to revise the prelaunch estimate of the instrument response curves to best match predicted and observed count rates. Synthetic photometry has been used to determine zero points for all filters in three magnitude systems and to derive interstellar extinction values for the ACS photometric systems. Due to the CCD internal scattering of long-wavelength photons, the width of the PSF increases significantly in the near-IR, and the aperture correction for photometry with near-IR filters depends on the spectral energy distribution of the source. We provide a detailed recipe to correct for the latter effect. Transformations between the ACS photometric systems and the UBVRI and WFPC2 systems are presented. In general, two sets of transformations are available: one based on the observation of two star clusters; the other on synthetic photometry. We discuss the accuracy of these transformations and their sensitivity to details of the spectra being transformed. Initial signs of detector degradation due to the HST radiative environment are already visible. We discuss the impact on the data in terms of dark rate increase, charge transfer inefficiency, and ``hot'' pixel population.
General Meta Tags
68- titleThe Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys - ADS
- apple-mobile-web-app-titleADS
- application-nameADS
- msapplication-TileColor#ffc40d
- theme-color#ffffff
Open Graph Meta Tags
6- og:typearticle
- og:titleThe Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys
- og:site_nameADS
- og:descriptionWe present the photometric calibration of the Advanced Camera for Surveys (ACS). The ACS was installed in the Hubble Space Telescope (HST) in 2002 March. It comprises three cameras: the Wide Field Channel (WFC), optimized for deep near-IR survey imaging programs; the High Resolution Channel (HRC), a high-resolution imager that fully samples the HST point-spread function (PSF) in the visible; and the Solar Blind Channel (SBC), a far-UV imager. A significant amount of data has been collected to characterize the on-orbit performance of the three channels. We give here an overview of the performance and calibration of the two CCD cameras (WFC and HRC) and a description of the best techniques for reducing ACS CCD data. The overall performance is as expected from prelaunch testing of the camera. Surprises were a better-than-predicted sensitivity in the visible and near-IR for both the WFC and HRC and an unpredicted dip in the HRC UV response at ~3200 Å. On-orbit observations of spectrophotometric standard stars have been used to revise the prelaunch estimate of the instrument response curves to best match predicted and observed count rates. Synthetic photometry has been used to determine zero points for all filters in three magnitude systems and to derive interstellar extinction values for the ACS photometric systems. Due to the CCD internal scattering of long-wavelength photons, the width of the PSF increases significantly in the near-IR, and the aperture correction for photometry with near-IR filters depends on the spectral energy distribution of the source. We provide a detailed recipe to correct for the latter effect. Transformations between the ACS photometric systems and the UBVRI and WFPC2 systems are presented. In general, two sets of transformations are available: one based on the observation of two star clusters; the other on synthetic photometry. We discuss the accuracy of these transformations and their sensitivity to details of the spectra being transformed. Initial signs of detector degradation due to the HST radiative environment are already visible. We discuss the impact on the data in terms of dark rate increase, charge transfer inefficiency, and ``hot'' pixel population.
- og:urlhttps://ui.adsabs.harvard.edu/abs/2005PASP..117.1049S/abstract
Twitter Meta Tags
7- twitter:cardsummary_large_image
- twitter:descriptionWe present the photometric calibration of the Advanced Camera for Surveys (ACS). The ACS was installed in the Hubble Space Telescope (HST) in 2002 March. It comprises three cameras: the Wide Field Channel (WFC), optimized for deep near-IR survey imaging programs; the High Resolution Channel (HRC), a high-resolution imager that fully samples the HST point-spread function (PSF) in the visible; and the Solar Blind Channel (SBC), a far-UV imager. A significant amount of data has been collected to characterize the on-orbit performance of the three channels. We give here an overview of the performance and calibration of the two CCD cameras (WFC and HRC) and a description of the best techniques for reducing ACS CCD data. The overall performance is as expected from prelaunch testing of the camera. Surprises were a better-than-predicted sensitivity in the visible and near-IR for both the WFC and HRC and an unpredicted dip in the HRC UV response at ~3200 Å. On-orbit observations of spectrophotometric standard stars have been used to revise the prelaunch estimate of the instrument response curves to best match predicted and observed count rates. Synthetic photometry has been used to determine zero points for all filters in three magnitude systems and to derive interstellar extinction values for the ACS photometric systems. Due to the CCD internal scattering of long-wavelength photons, the width of the PSF increases significantly in the near-IR, and the aperture correction for photometry with near-IR filters depends on the spectral energy distribution of the source. We provide a detailed recipe to correct for the latter effect. Transformations between the ACS photometric systems and the UBVRI and WFPC2 systems are presented. In general, two sets of transformations are available: one based on the observation of two star clusters; the other on synthetic photometry. We discuss the accuracy of these transformations and their sensitivity to details of the spectra being transformed. Initial signs of detector degradation due to the HST radiative environment are already visible. We discuss the impact on the data in terms of dark rate increase, charge transfer inefficiency, and ``hot'' pixel population.
- twitter:titleThe Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys
- twitter:site@adsabs
- twitter:domainADS
Link Tags
9- apple-touch-icon/styles/favicon/apple-touch-icon.png
- canonicalhttp://ui.adsabs.harvard.edu/abs/2005PASP..117.1049S/abstract
- icon/styles/favicon/favicon-32x32.png
- icon/styles/favicon/favicon-16x16.png
- manifest/styles/favicon/site.webmanifest
Links
49- http://www.cfa.harvard.edu/sao
- http://www.nasa.gov
- http://www.si.edu
- http://www.si.edu/Privacy
- http://www.si.edu/Termsofuse