
adsabs.harvard.edu/abs/2009ApJ...691.1222R
Preview meta tags from the adsabs.harvard.edu website.
Linked Hostnames
5- 28 links toadsabs.harvard.edu
- 3 links towww.si.edu
- 2 links towww.cfa.harvard.edu
- 1 link toadsisdownorjustme.herokuapp.com
- 1 link towww.nasa.gov
Thumbnail
Search Engine Appearance
Automated LASCO CME Catalog for Solar Cycle 23: Are CMEs Scale Invariant?
In this paper, we present the first automatically constructed LASCO coronal mass ejection (CME) catalog, a result of the application of the Computer Aided CME Tracking software (CACTus) on the LASCO archive during the interval 1997 September-2007 January. We have studied the CME characteristics and have compared them with similar results obtained by manual detection (CDAW CME catalog). On average, CACTus detects less than two events per day during solar minimum, up to eight events during maximum, nearly half of them being narrow (<20°). Assuming a correction factor, we find that the CACTus CME rate is surprisingly consistent with CME rates found during the past 30 years. The CACTus statistics show that small-scale outflow is ubiquitously observed in the outer corona. The majority of CACTus-only events are narrow transients related to previous CME activity or to intensity variations in the slow solar wind, reflecting its turbulent nature. A significant fraction (about 15%) of CACTus-only events were identified as independent events, thus not related to other CME activity. The CACTus CME width distribution is essentially scale invariant in angular span over a range of scales from 20° to 120° while previous catalogs present a broad maximum around 30°. The possibility that the size of coronal mass outflows follow a power-law distribution could indicate that no typical CME size exists, i.e., that the narrow transients are not different from the larger well defined CMEs.
Bing
Automated LASCO CME Catalog for Solar Cycle 23: Are CMEs Scale Invariant?
In this paper, we present the first automatically constructed LASCO coronal mass ejection (CME) catalog, a result of the application of the Computer Aided CME Tracking software (CACTus) on the LASCO archive during the interval 1997 September-2007 January. We have studied the CME characteristics and have compared them with similar results obtained by manual detection (CDAW CME catalog). On average, CACTus detects less than two events per day during solar minimum, up to eight events during maximum, nearly half of them being narrow (<20°). Assuming a correction factor, we find that the CACTus CME rate is surprisingly consistent with CME rates found during the past 30 years. The CACTus statistics show that small-scale outflow is ubiquitously observed in the outer corona. The majority of CACTus-only events are narrow transients related to previous CME activity or to intensity variations in the slow solar wind, reflecting its turbulent nature. A significant fraction (about 15%) of CACTus-only events were identified as independent events, thus not related to other CME activity. The CACTus CME width distribution is essentially scale invariant in angular span over a range of scales from 20° to 120° while previous catalogs present a broad maximum around 30°. The possibility that the size of coronal mass outflows follow a power-law distribution could indicate that no typical CME size exists, i.e., that the narrow transients are not different from the larger well defined CMEs.
DuckDuckGo

Automated LASCO CME Catalog for Solar Cycle 23: Are CMEs Scale Invariant?
In this paper, we present the first automatically constructed LASCO coronal mass ejection (CME) catalog, a result of the application of the Computer Aided CME Tracking software (CACTus) on the LASCO archive during the interval 1997 September-2007 January. We have studied the CME characteristics and have compared them with similar results obtained by manual detection (CDAW CME catalog). On average, CACTus detects less than two events per day during solar minimum, up to eight events during maximum, nearly half of them being narrow (<20°). Assuming a correction factor, we find that the CACTus CME rate is surprisingly consistent with CME rates found during the past 30 years. The CACTus statistics show that small-scale outflow is ubiquitously observed in the outer corona. The majority of CACTus-only events are narrow transients related to previous CME activity or to intensity variations in the slow solar wind, reflecting its turbulent nature. A significant fraction (about 15%) of CACTus-only events were identified as independent events, thus not related to other CME activity. The CACTus CME width distribution is essentially scale invariant in angular span over a range of scales from 20° to 120° while previous catalogs present a broad maximum around 30°. The possibility that the size of coronal mass outflows follow a power-law distribution could indicate that no typical CME size exists, i.e., that the narrow transients are not different from the larger well defined CMEs.
General Meta Tags
45- titleAutomated LASCO CME Catalog for Solar Cycle 23: Are CMEs Scale Invariant? - ADS
- apple-mobile-web-app-titleADS
- application-nameADS
- msapplication-TileColor#ffc40d
- theme-color#ffffff
Open Graph Meta Tags
6- og:typearticle
- og:titleAutomated LASCO CME Catalog for Solar Cycle 23: Are CMEs Scale Invariant?
- og:site_nameADS
- og:descriptionIn this paper, we present the first automatically constructed LASCO coronal mass ejection (CME) catalog, a result of the application of the Computer Aided CME Tracking software (CACTus) on the LASCO archive during the interval 1997 September-2007 January. We have studied the CME characteristics and have compared them with similar results obtained by manual detection (CDAW CME catalog). On average, CACTus detects less than two events per day during solar minimum, up to eight events during maximum, nearly half of them being narrow (<20°). Assuming a correction factor, we find that the CACTus CME rate is surprisingly consistent with CME rates found during the past 30 years. The CACTus statistics show that small-scale outflow is ubiquitously observed in the outer corona. The majority of CACTus-only events are narrow transients related to previous CME activity or to intensity variations in the slow solar wind, reflecting its turbulent nature. A significant fraction (about 15%) of CACTus-only events were identified as independent events, thus not related to other CME activity. The CACTus CME width distribution is essentially scale invariant in angular span over a range of scales from 20° to 120° while previous catalogs present a broad maximum around 30°. The possibility that the size of coronal mass outflows follow a power-law distribution could indicate that no typical CME size exists, i.e., that the narrow transients are not different from the larger well defined CMEs.
- og:urlhttps://ui.adsabs.harvard.edu/abs/2009ApJ...691.1222R/abstract
Twitter Meta Tags
7- twitter:cardsummary_large_image
- twitter:descriptionIn this paper, we present the first automatically constructed LASCO coronal mass ejection (CME) catalog, a result of the application of the Computer Aided CME Tracking software (CACTus) on the LASCO archive during the interval 1997 September-2007 January. We have studied the CME characteristics and have compared them with similar results obtained by manual detection (CDAW CME catalog). On average, CACTus detects less than two events per day during solar minimum, up to eight events during maximum, nearly half of them being narrow (<20°). Assuming a correction factor, we find that the CACTus CME rate is surprisingly consistent with CME rates found during the past 30 years. The CACTus statistics show that small-scale outflow is ubiquitously observed in the outer corona. The majority of CACTus-only events are narrow transients related to previous CME activity or to intensity variations in the slow solar wind, reflecting its turbulent nature. A significant fraction (about 15%) of CACTus-only events were identified as independent events, thus not related to other CME activity. The CACTus CME width distribution is essentially scale invariant in angular span over a range of scales from 20° to 120° while previous catalogs present a broad maximum around 30°. The possibility that the size of coronal mass outflows follow a power-law distribution could indicate that no typical CME size exists, i.e., that the narrow transients are not different from the larger well defined CMEs.
- twitter:titleAutomated LASCO CME Catalog for Solar Cycle 23: Are CMEs Scale Invariant?
- twitter:site@adsabs
- twitter:domainADS
Link Tags
9- apple-touch-icon/styles/favicon/apple-touch-icon.png
- canonicalhttp://ui.adsabs.harvard.edu/abs/2009ApJ...691.1222R/abstract
- icon/styles/favicon/favicon-32x32.png
- icon/styles/favicon/favicon-16x16.png
- manifest/styles/favicon/site.webmanifest
Links
35- http://www.cfa.harvard.edu/sao
- http://www.nasa.gov
- http://www.si.edu
- http://www.si.edu/Privacy
- http://www.si.edu/Termsofuse