adsabs.harvard.edu/abs/2017MNRAS.471.2357W

Preview meta tags from the adsabs.harvard.edu website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://adsabs.harvard.edu/abs/2017MNRAS.471.2357W

Gasoline2: a modern smoothed particle hydrodynamics code

The methods in the Gasoline2 smoothed particle hydrodynamics (SPH) code are described and tested. Gasoline2 is the most recent version of the Gasoline code for parallel hydrodynamics and gravity with identical hydrodynamics to the Changa code. As with other Modern SPH codes, we prevent sharp jumps in time-steps, use upgraded kernels and larger neighbour numbers and employ local viscosity limiters. Unique features in Gasoline2 include its Geometric Density Average Force expression, explicit Turbulent Diffusion terms and Gradient-Based shock detection to limit artificial viscosity. This last feature allows Gasoline2 to completely avoid artificial viscosity in non-shocking compressive flows. We present a suite of tests demonstrating the value of these features with the same code configuration and parameter choices used for production simulations.



Bing

Gasoline2: a modern smoothed particle hydrodynamics code

https://adsabs.harvard.edu/abs/2017MNRAS.471.2357W

The methods in the Gasoline2 smoothed particle hydrodynamics (SPH) code are described and tested. Gasoline2 is the most recent version of the Gasoline code for parallel hydrodynamics and gravity with identical hydrodynamics to the Changa code. As with other Modern SPH codes, we prevent sharp jumps in time-steps, use upgraded kernels and larger neighbour numbers and employ local viscosity limiters. Unique features in Gasoline2 include its Geometric Density Average Force expression, explicit Turbulent Diffusion terms and Gradient-Based shock detection to limit artificial viscosity. This last feature allows Gasoline2 to completely avoid artificial viscosity in non-shocking compressive flows. We present a suite of tests demonstrating the value of these features with the same code configuration and parameter choices used for production simulations.



DuckDuckGo

https://adsabs.harvard.edu/abs/2017MNRAS.471.2357W

Gasoline2: a modern smoothed particle hydrodynamics code

The methods in the Gasoline2 smoothed particle hydrodynamics (SPH) code are described and tested. Gasoline2 is the most recent version of the Gasoline code for parallel hydrodynamics and gravity with identical hydrodynamics to the Changa code. As with other Modern SPH codes, we prevent sharp jumps in time-steps, use upgraded kernels and larger neighbour numbers and employ local viscosity limiters. Unique features in Gasoline2 include its Geometric Density Average Force expression, explicit Turbulent Diffusion terms and Gradient-Based shock detection to limit artificial viscosity. This last feature allows Gasoline2 to completely avoid artificial viscosity in non-shocking compressive flows. We present a suite of tests demonstrating the value of these features with the same code configuration and parameter choices used for production simulations.

  • General Meta Tags

    45
    • title
      Gasoline2: a modern smoothed particle hydrodynamics code - ADS
    • apple-mobile-web-app-title
      ADS
    • application-name
      ADS
    • msapplication-TileColor
      #ffc40d
    • theme-color
      #ffffff
  • Open Graph Meta Tags

    6
    • og:type
      article
    • og:title
      Gasoline2: a modern smoothed particle hydrodynamics code
    • og:site_name
      ADS
    • og:description
      The methods in the Gasoline2 smoothed particle hydrodynamics (SPH) code are described and tested. Gasoline2 is the most recent version of the Gasoline code for parallel hydrodynamics and gravity with identical hydrodynamics to the Changa code. As with other Modern SPH codes, we prevent sharp jumps in time-steps, use upgraded kernels and larger neighbour numbers and employ local viscosity limiters. Unique features in Gasoline2 include its Geometric Density Average Force expression, explicit Turbulent Diffusion terms and Gradient-Based shock detection to limit artificial viscosity. This last feature allows Gasoline2 to completely avoid artificial viscosity in non-shocking compressive flows. We present a suite of tests demonstrating the value of these features with the same code configuration and parameter choices used for production simulations.
    • og:url
      https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.2357W/abstract
  • Twitter Meta Tags

    7
    • twitter:card
      summary_large_image
    • twitter:description
      The methods in the Gasoline2 smoothed particle hydrodynamics (SPH) code are described and tested. Gasoline2 is the most recent version of the Gasoline code for parallel hydrodynamics and gravity with identical hydrodynamics to the Changa code. As with other Modern SPH codes, we prevent sharp jumps in time-steps, use upgraded kernels and larger neighbour numbers and employ local viscosity limiters. Unique features in Gasoline2 include its Geometric Density Average Force expression, explicit Turbulent Diffusion terms and Gradient-Based shock detection to limit artificial viscosity. This last feature allows Gasoline2 to completely avoid artificial viscosity in non-shocking compressive flows. We present a suite of tests demonstrating the value of these features with the same code configuration and parameter choices used for production simulations.
    • twitter:title
      Gasoline2: a modern smoothed particle hydrodynamics code
    • twitter:site
      @adsabs
    • twitter:domain
      ADS
  • Link Tags

    9
    • apple-touch-icon
      /styles/favicon/apple-touch-icon.png
    • canonical
      http://ui.adsabs.harvard.edu/abs/2017MNRAS.471.2357W/abstract
    • icon
      /styles/favicon/favicon-32x32.png
    • icon
      /styles/favicon/favicon-16x16.png
    • manifest
      /styles/favicon/site.webmanifest

Links

36