blog.wtf.sg/2017/12/04/computing-log-normal-for-isotropic-gaussians

Preview meta tags from the blog.wtf.sg website.

Linked Hostnames

1

Search Engine Appearance

Google

https://blog.wtf.sg/2017/12/04/computing-log-normal-for-isotropic-gaussians

Computing Log Normal for Isotropic Gaussians

Consider a matrix $\mathbf{X}$ with rows of datapoints $\mathbf{x_i}$ which are $(n, d)$. The matrix $\mathbf{M}$ is made up of the $\boldsymbol{\mu}_j$ of $k$ different Gaussian components. The task is to compute the log probability of each of these $k$ components for all $n$ data points. In [1]: import theano import theano.tensor as T import numpy as np import time X = T.matrix('X') M = T.



Bing

Computing Log Normal for Isotropic Gaussians

https://blog.wtf.sg/2017/12/04/computing-log-normal-for-isotropic-gaussians

Consider a matrix $\mathbf{X}$ with rows of datapoints $\mathbf{x_i}$ which are $(n, d)$. The matrix $\mathbf{M}$ is made up of the $\boldsymbol{\mu}_j$ of $k$ different Gaussian components. The task is to compute the log probability of each of these $k$ components for all $n$ data points. In [1]: import theano import theano.tensor as T import numpy as np import time X = T.matrix('X') M = T.



DuckDuckGo

https://blog.wtf.sg/2017/12/04/computing-log-normal-for-isotropic-gaussians

Computing Log Normal for Isotropic Gaussians

Consider a matrix $\mathbf{X}$ with rows of datapoints $\mathbf{x_i}$ which are $(n, d)$. The matrix $\mathbf{M}$ is made up of the $\boldsymbol{\mu}_j$ of $k$ different Gaussian components. The task is to compute the log probability of each of these $k$ components for all $n$ data points. In [1]: import theano import theano.tensor as T import numpy as np import time X = T.matrix('X') M = T.

  • General Meta Tags

    8
    • title
      when trees fall... | Computing Log Normal for Isotropic Gaussians
    • charset
      utf-8
    • X-UA-Compatible
      IE=edge,chrome=1
    • viewport
      width=device-width,minimum-scale=1
    • generator
      Hugo 0.74.3
  • Open Graph Meta Tags

    4
    • og:title
      Computing Log Normal for Isotropic Gaussians
    • og:description
      Consider a matrix $\mathbf{X}$ with rows of datapoints $\mathbf{x_i}$ which are $(n, d)$. The matrix $\mathbf{M}$ is made up of the $\boldsymbol{\mu}_j$ of $k$ different Gaussian components. The task is to compute the log probability of each of these $k$ components for all $n$ data points. In [1]: import theano import theano.tensor as T import numpy as np import time X = T.matrix('X') M = T.
    • og:type
      article
    • og:url
      /2017/12/04/computing-log-normal-for-isotropic-gaussians/
  • Twitter Meta Tags

    3
    • twitter:card
      summary
    • twitter:title
      Computing Log Normal for Isotropic Gaussians
    • twitter:description
      Consider a matrix $\mathbf{X}$ with rows of datapoints $\mathbf{x_i}$ which are $(n, d)$. The matrix $\mathbf{M}$ is made up of the $\boldsymbol{\mu}_j$ of $k$ different Gaussian components. The task is to compute the log probability of each of these $k$ components for all $n$ data points. In [1]: import theano import theano.tensor as T import numpy as np import time X = T.matrix('X') M = T.
  • Item Prop Meta Tags

    6
    • name
      Computing Log Normal for Isotropic Gaussians
    • description
      Consider a matrix $\mathbf{X}$ with rows of datapoints $\mathbf{x_i}$ which are $(n, d)$. The matrix $\mathbf{M}$ is made up of the $\boldsymbol{\mu}_j$ of $k$ different Gaussian components. The task is to compute the log probability of each of these $k$ components for all $n$ data points. In [1]: import theano import theano.tensor as T import numpy as np import time X = T.matrix('X') M = T.
    • datePublished
      2017-12-03T18:22:36+00:00
    • dateModified
      2017-12-03T18:22:36+00:00
    • wordCount
      437
  • Link Tags

    1
    • stylesheet
      /style.css

Links

2