bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04920-7

Preview meta tags from the bmcbioinformatics.biomedcentral.com website.

Linked Hostnames

21

Thumbnail

Search Engine Appearance

Google

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04920-7

SumStatsRehab: an efficient algorithm for GWAS summary statistics assessment and restoration - BMC Bioinformatics

Generating polygenic risk scores for diseases and complex traits requires high quality GWAS summary statistic files. Often, these files can be difficult to acquire either as a result of unshared or incomplete data. To date, bioinformatics tools which focus on restoring missing columns containing identification and association data are limited, which has the potential to increase the number of usable GWAS summary statistics files. SumStatsRehab was able to restore rsID, effect/other alleles, chromosome, base pair position, effect allele frequencies, beta, standard error, and p-values to a better extent than any other currently available tool, with minimal loss. SumStatsRehab offers a unique tool utilizing both functional programming and pipeline-like architecture, allowing users to generate accurate data restorations for incomplete summary statistics files. This in turn, increases the number of usable GWAS summary statistics files, which may be invaluable for less researched health traits.



Bing

SumStatsRehab: an efficient algorithm for GWAS summary statistics assessment and restoration - BMC Bioinformatics

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04920-7

Generating polygenic risk scores for diseases and complex traits requires high quality GWAS summary statistic files. Often, these files can be difficult to acquire either as a result of unshared or incomplete data. To date, bioinformatics tools which focus on restoring missing columns containing identification and association data are limited, which has the potential to increase the number of usable GWAS summary statistics files. SumStatsRehab was able to restore rsID, effect/other alleles, chromosome, base pair position, effect allele frequencies, beta, standard error, and p-values to a better extent than any other currently available tool, with minimal loss. SumStatsRehab offers a unique tool utilizing both functional programming and pipeline-like architecture, allowing users to generate accurate data restorations for incomplete summary statistics files. This in turn, increases the number of usable GWAS summary statistics files, which may be invaluable for less researched health traits.



DuckDuckGo

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04920-7

SumStatsRehab: an efficient algorithm for GWAS summary statistics assessment and restoration - BMC Bioinformatics

Generating polygenic risk scores for diseases and complex traits requires high quality GWAS summary statistic files. Often, these files can be difficult to acquire either as a result of unshared or incomplete data. To date, bioinformatics tools which focus on restoring missing columns containing identification and association data are limited, which has the potential to increase the number of usable GWAS summary statistics files. SumStatsRehab was able to restore rsID, effect/other alleles, chromosome, base pair position, effect allele frequencies, beta, standard error, and p-values to a better extent than any other currently available tool, with minimal loss. SumStatsRehab offers a unique tool utilizing both functional programming and pipeline-like architecture, allowing users to generate accurate data restorations for incomplete summary statistics files. This in turn, increases the number of usable GWAS summary statistics files, which may be invaluable for less researched health traits.

  • General Meta Tags

    119
    • title
      SumStatsRehab: an efficient algorithm for GWAS summary statistics assessment and restoration | BMC Bioinformatics | Full Text
    • charset
      UTF-8
    • X-UA-Compatible
      IE=edge
    • applicable-device
      pc,mobile
    • viewport
      width=device-width, initial-scale=1
  • Open Graph Meta Tags

    6
    • og:url
      https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04920-7
    • og:type
      article
    • og:site_name
      BioMed Central
    • og:title
      SumStatsRehab: an efficient algorithm for GWAS summary statistics assessment and restoration - BMC Bioinformatics
    • og:description
      Background Generating polygenic risk scores for diseases and complex traits requires high quality GWAS summary statistic files. Often, these files can be difficult to acquire either as a result of unshared or incomplete data. To date, bioinformatics tools which focus on restoring missing columns containing identification and association data are limited, which has the potential to increase the number of usable GWAS summary statistics files. Results SumStatsRehab was able to restore rsID, effect/other alleles, chromosome, base pair position, effect allele frequencies, beta, standard error, and p-values to a better extent than any other currently available tool, with minimal loss. Conclusions SumStatsRehab offers a unique tool utilizing both functional programming and pipeline-like architecture, allowing users to generate accurate data restorations for incomplete summary statistics files. This in turn, increases the number of usable GWAS summary statistics files, which may be invaluable for less researched health traits.
  • Link Tags

    12
    • apple-touch-icon
      /static/img/favicons/bmc/apple-touch-icon-582ef1d0f5.png
    • canonical
      https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04920-7
    • icon
      /static/img/favicons/bmc/android-chrome-192x192-9625b7cdba.png
    • icon
      /static/img/favicons/bmc/favicon-32x32-5d7879efe1.png
    • icon
      /static/img/favicons/bmc/favicon-16x16-c241ac1a2f.png

Emails

2

Links

165