bounded-regret.ghost.io/eigenvalue-bounds

Preview meta tags from the bounded-regret.ghost.io website.

Linked Hostnames

15

Thumbnail

Search Engine Appearance

Google

https://bounded-regret.ghost.io/eigenvalue-bounds

Eigenvalue Bounds

While grading homeworks today, I came across the following bound: Theorem 1: If A and B are symmetric $n\times n$ matrices with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ respectively, then $Trace(A^TB)



Bing

Eigenvalue Bounds

https://bounded-regret.ghost.io/eigenvalue-bounds

While grading homeworks today, I came across the following bound: Theorem 1: If A and B are symmetric $n\times n$ matrices with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ respectively, then $Trace(A^TB)



DuckDuckGo

https://bounded-regret.ghost.io/eigenvalue-bounds

Eigenvalue Bounds

While grading homeworks today, I came across the following bound: Theorem 1: If A and B are symmetric $n\times n$ matrices with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ respectively, then $Trace(A^TB)

  • General Meta Tags

    9
    • title
      Eigenvalue Bounds
    • charset
      utf-8
    • viewport
      width=device-width, initial-scale=1
    • referrer
      no-referrer-when-downgrade
    • article:published_time
      2013-02-05T08:00:00.000Z
  • Open Graph Meta Tags

    8
    • og:site_name
      Bounded Regret
    • og:type
      article
    • og:title
      Eigenvalue Bounds
    • og:description
      While grading homeworks today, I came across the following bound: Theorem 1: If A and B are symmetric $n\times n$ matrices with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ respectively, then $Trace(A^TB)
    • og:url
      https://bounded-regret.ghost.io/eigenvalue-bounds/
  • Twitter Meta Tags

    10
    • twitter:card
      summary_large_image
    • twitter:title
      Eigenvalue Bounds
    • twitter:description
      While grading homeworks today, I came across the following bound: Theorem 1: If A and B are symmetric $n\times n$ matrices with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ respectively, then $Trace(A^TB)
    • twitter:url
      https://bounded-regret.ghost.io/eigenvalue-bounds/
    • twitter:image
      https://bounded-regret.ghost.io/content/images/2021/08/logo2-1.png
  • Link Tags

    8
    • alternate
      https://bounded-regret.ghost.io/rss/
    • amphtml
      https://bounded-regret.ghost.io/eigenvalue-bounds/amp/
    • canonical
      https://bounded-regret.ghost.io/eigenvalue-bounds/
    • icon
      https://bounded-regret.ghost.io/content/images/size/w256h256/2021/08/logo2.png
    • stylesheet
      /assets/built/screen.css?v=a641a455ed

Links

24