cloud.r-project.org/package=ragnar

Preview meta tags from the cloud.r-project.org website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://cloud.r-project.org/package=ragnar

ragnar: Retrieval-Augmented Generation (RAG) Workflows

Provides tools for implementing Retrieval-Augmented Generation (RAG) workflows with Large Language Models (LLM). Includes functions for document processing, text chunking, embedding generation, storage management, and content retrieval. Supports various document types and embedding providers ('Ollama', 'OpenAI'), with 'DuckDB' as the default storage backend. Integrates with the 'ellmer' package to equip chat objects with retrieval capabilities. Designed to offer both sensible defaults and customization options with transparent access to intermediate outputs. For a review of retrieval-augmented generation methods, see Gao et al. (2023) "Retrieval-Augmented Generation for Large Language Models: A Survey" &lt;<a href="https://doi.org/10.48550%2FarXiv.2312.10997" target="_top">doi:10.48550/arXiv.2312.10997</a>&gt;.



Bing

ragnar: Retrieval-Augmented Generation (RAG) Workflows

https://cloud.r-project.org/package=ragnar

Provides tools for implementing Retrieval-Augmented Generation (RAG) workflows with Large Language Models (LLM). Includes functions for document processing, text chunking, embedding generation, storage management, and content retrieval. Supports various document types and embedding providers ('Ollama', 'OpenAI'), with 'DuckDB' as the default storage backend. Integrates with the 'ellmer' package to equip chat objects with retrieval capabilities. Designed to offer both sensible defaults and customization options with transparent access to intermediate outputs. For a review of retrieval-augmented generation methods, see Gao et al. (2023) "Retrieval-Augmented Generation for Large Language Models: A Survey" &lt;<a href="https://doi.org/10.48550%2FarXiv.2312.10997" target="_top">doi:10.48550/arXiv.2312.10997</a>&gt;.



DuckDuckGo

https://cloud.r-project.org/package=ragnar

ragnar: Retrieval-Augmented Generation (RAG) Workflows

Provides tools for implementing Retrieval-Augmented Generation (RAG) workflows with Large Language Models (LLM). Includes functions for document processing, text chunking, embedding generation, storage management, and content retrieval. Supports various document types and embedding providers ('Ollama', 'OpenAI'), with 'DuckDB' as the default storage backend. Integrates with the 'ellmer' package to equip chat objects with retrieval capabilities. Designed to offer both sensible defaults and customization options with transparent access to intermediate outputs. For a review of retrieval-augmented generation methods, see Gao et al. (2023) "Retrieval-Augmented Generation for Large Language Models: A Survey" &lt;<a href="https://doi.org/10.48550%2FarXiv.2312.10997" target="_top">doi:10.48550/arXiv.2312.10997</a>&gt;.

  • General Meta Tags

    10
    • title
      CRAN: Package ragnar
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0, user-scalable=yes
    • citation_title
      Retrieval-Augmented Generation (RAG) Workflows [R package ragnar version 0.2.0]
    • citation_author1
      Tomasz Kalinowski
  • Open Graph Meta Tags

    5
    • og:title
      ragnar: Retrieval-Augmented Generation (RAG) Workflows
    • og:description
      Provides tools for implementing Retrieval-Augmented Generation (RAG) workflows with Large Language Models (LLM). Includes functions for document processing, text chunking, embedding generation, storage management, and content retrieval. Supports various document types and embedding providers ('Ollama', 'OpenAI'), with 'DuckDB' as the default storage backend. Integrates with the 'ellmer' package to equip chat objects with retrieval capabilities. Designed to offer both sensible defaults and customization options with transparent access to intermediate outputs. For a review of retrieval-augmented generation methods, see Gao et al. (2023) "Retrieval-Augmented Generation for Large Language Models: A Survey" &lt;<a href="https://doi.org/10.48550%2FarXiv.2312.10997" target="_top">doi:10.48550/arXiv.2312.10997</a>&gt;.
    • og:image
      https://CRAN.R-project.org/CRANlogo.png
    • og:type
      website
    • og:url
      https://CRAN.R-project.org/package=ragnar
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    2
    • canonical
      https://CRAN.R-project.org/package=ragnar
    • stylesheet
      ../../CRAN_web.css

Links

8