commons.lib.jmu.edu/cisr-journal/vol27/iss2/9
Preview meta tags from the commons.lib.jmu.edu website.
Linked Hostnames
6- 21 links tocommons.lib.jmu.edu
- 5 links tonetwork.bepress.com
- 2 links towww.bepress.com
- 1 link toget.adobe.com
- 1 link toplu.mx
- 1 link towww.elsevier.com
Search Engine Appearance
Computer Vision Detection of Explosive Ordnance: A High-Performance 9N235/9N210 Cluster Submunition Detector
The detection of explosive ordnance (EO) objects is experiencing a period of innovation driven by the convergence of new technologies including artificial intelligence (AI) and machine learning, open-source intelligence (OSINT) processing, and remote mobility capabilities such as drones and robotics.1 Advances are being made on at least two tracks: in the automated searching of photographic image archives, and in the real-time detection of objects in the field.2 Different technologies are responsive to different types of EO detection challenges, such as objects that are buried, semi-buried, or partially damaged. Computer vision—a type of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos, and other visual inputs, and take actions or make recommendations based on that information—is a promising AI technology that can greatly enhance humanitarian mine action (HMA), as well as support evidentiary documentation of the use of EO that are prohibited under international humanitarian law. This article describes a computer vision algorithm creation workflow developed to automate the detection of the 9N235/9N210 cluster submunition, a heavily deployed munition in the Ukraine conflict. The six-step process described here incorporates photography, photogrammetry, 3D-rendering, 3D-printing, and deep convolutional neural networks.3 The resulting high-performance detector can be deployed for searching and filtering images generated as part of OSINT investigations and soon, for real-time field detection objectives.
Bing
Computer Vision Detection of Explosive Ordnance: A High-Performance 9N235/9N210 Cluster Submunition Detector
The detection of explosive ordnance (EO) objects is experiencing a period of innovation driven by the convergence of new technologies including artificial intelligence (AI) and machine learning, open-source intelligence (OSINT) processing, and remote mobility capabilities such as drones and robotics.1 Advances are being made on at least two tracks: in the automated searching of photographic image archives, and in the real-time detection of objects in the field.2 Different technologies are responsive to different types of EO detection challenges, such as objects that are buried, semi-buried, or partially damaged. Computer vision—a type of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos, and other visual inputs, and take actions or make recommendations based on that information—is a promising AI technology that can greatly enhance humanitarian mine action (HMA), as well as support evidentiary documentation of the use of EO that are prohibited under international humanitarian law. This article describes a computer vision algorithm creation workflow developed to automate the detection of the 9N235/9N210 cluster submunition, a heavily deployed munition in the Ukraine conflict. The six-step process described here incorporates photography, photogrammetry, 3D-rendering, 3D-printing, and deep convolutional neural networks.3 The resulting high-performance detector can be deployed for searching and filtering images generated as part of OSINT investigations and soon, for real-time field detection objectives.
DuckDuckGo
Computer Vision Detection of Explosive Ordnance: A High-Performance 9N235/9N210 Cluster Submunition Detector
The detection of explosive ordnance (EO) objects is experiencing a period of innovation driven by the convergence of new technologies including artificial intelligence (AI) and machine learning, open-source intelligence (OSINT) processing, and remote mobility capabilities such as drones and robotics.1 Advances are being made on at least two tracks: in the automated searching of photographic image archives, and in the real-time detection of objects in the field.2 Different technologies are responsive to different types of EO detection challenges, such as objects that are buried, semi-buried, or partially damaged. Computer vision—a type of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos, and other visual inputs, and take actions or make recommendations based on that information—is a promising AI technology that can greatly enhance humanitarian mine action (HMA), as well as support evidentiary documentation of the use of EO that are prohibited under international humanitarian law. This article describes a computer vision algorithm creation workflow developed to automate the detection of the 9N235/9N210 cluster submunition, a heavily deployed munition in the Ukraine conflict. The six-step process described here incorporates photography, photogrammetry, 3D-rendering, 3D-printing, and deep convolutional neural networks.3 The resulting high-performance detector can be deployed for searching and filtering images generated as part of OSINT investigations and soon, for real-time field detection objectives.
General Meta Tags
26- title"Computer Vision Detection of Explosive Ordnance: A High-Performance 9N235/9N210 Cluster Submunition Detector" by Adam Harvey and Emile LeBrun
- charsetutf-8
- viewportwidth=device-width
- article:authorAdam Harvey
- authorAdam Harvey
Open Graph Meta Tags
5- og:titleComputer Vision Detection of Explosive Ordnance: A High-Performance 9N235/9N210 Cluster Submunition Detector
- og:descriptionThe detection of explosive ordnance (EO) objects is experiencing a period of innovation driven by the convergence of new technologies including artificial intelligence (AI) and machine learning, open-source intelligence (OSINT) processing, and remote mobility capabilities such as drones and robotics.1 Advances are being made on at least two tracks: in the automated searching of photographic image archives, and in the real-time detection of objects in the field.2 Different technologies are responsive to different types of EO detection challenges, such as objects that are buried, semi-buried, or partially damaged. Computer vision—a type of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos, and other visual inputs, and take actions or make recommendations based on that information—is a promising AI technology that can greatly enhance humanitarian mine action (HMA), as well as support evidentiary documentation of the use of EO that are prohibited under international humanitarian law. This article describes a computer vision algorithm creation workflow developed to automate the detection of the 9N235/9N210 cluster submunition, a heavily deployed munition in the Ukraine conflict. The six-step process described here incorporates photography, photogrammetry, 3D-rendering, 3D-printing, and deep convolutional neural networks.3 The resulting high-performance detector can be deployed for searching and filtering images generated as part of OSINT investigations and soon, for real-time field detection objectives.
- og:typearticle
- og:urlhttps://commons.lib.jmu.edu/cisr-journal/vol27/iss2/9
- og:site_nameJMU Scholarly Commons
Twitter Meta Tags
3- twitter:titleComputer Vision Detection of Explosive Ordnance: A High-Performance 9N235/9N210 Cluster Submunition Detector
- twitter:descriptionThe detection of explosive ordnance (EO) objects is experiencing a period of innovation driven by the convergence of new technologies including artificial intelligence (AI) and machine learning, open-source intelligence (OSINT) processing, and remote mobility capabilities such as drones and robotics.1 Advances are being made on at least two tracks: in the automated searching of photographic image archives, and in the real-time detection of objects in the field.2 Different technologies are responsive to different types of EO detection challenges, such as objects that are buried, semi-buried, or partially damaged. Computer vision—a type of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos, and other visual inputs, and take actions or make recommendations based on that information—is a promising AI technology that can greatly enhance humanitarian mine action (HMA), as well as support evidentiary documentation of the use of EO that are prohibited under international humanitarian law. This article describes a computer vision algorithm creation workflow developed to automate the detection of the 9N235/9N210 cluster submunition, a heavily deployed munition in the Ukraine conflict. The six-step process described here incorporates photography, photogrammetry, 3D-rendering, 3D-printing, and deep convolutional neural networks.3 The resulting high-performance detector can be deployed for searching and filtering images generated as part of OSINT investigations and soon, for real-time field detection objectives.
- twitter:cardsummary
Item Prop Meta Tags
2- nameComputer Vision Detection of Explosive Ordnance: A High-Performance 9N235/9N210 Cluster Submunition Detector
- descriptionThe detection of explosive ordnance (EO) objects is experiencing a period of innovation driven by the convergence of new technologies including artificial intelligence (AI) and machine learning, open-source intelligence (OSINT) processing, and remote mobility capabilities such as drones and robotics.1 Advances are being made on at least two tracks: in the automated searching of photographic image archives, and in the real-time detection of objects in the field.2 Different technologies are responsive to different types of EO detection challenges, such as objects that are buried, semi-buried, or partially damaged. Computer vision—a type of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos, and other visual inputs, and take actions or make recommendations based on that information—is a promising AI technology that can greatly enhance humanitarian mine action (HMA), as well as support evidentiary documentation of the use of EO that are prohibited under international humanitarian law. This article describes a computer vision algorithm creation workflow developed to automate the detection of the 9N235/9N210 cluster submunition, a heavily deployed munition in the Ukraine conflict. The six-step process described here incorporates photography, photogrammetry, 3D-rendering, 3D-printing, and deep convolutional neural networks.3 The resulting high-performance detector can be deployed for searching and filtering images generated as part of OSINT investigations and soon, for real-time field detection objectives.
Link Tags
6- alternate/cisr-journal/recent.rss
- shortcut icon/favicon.ico
- stylesheet/cisr-journal/ir-journal-style.css
- stylesheet/assets/floatbox/floatbox.css
- stylesheet/ir-print.css
Links
31- https://commons.lib.jmu.edu
- https://commons.lib.jmu.edu/about.html
- https://commons.lib.jmu.edu/accessibility.html
- https://commons.lib.jmu.edu/cgi/myaccount.cgi?context=
- https://commons.lib.jmu.edu/cgi/viewcontent.cgi?article=3013&context=cisr-journal