cran.r-project.org/package=brms

Preview meta tags from the cran.r-project.org website.

Linked Hostnames

6

Thumbnail

Search Engine Appearance

Google

https://cran.r-project.org/package=brms

brms: Bayesian Regression Models using 'Stan'

Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit &ndash; among others &ndash; linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: Bürkner (2017) &lt;<a href="https://doi.org/10.18637%2Fjss.v080.i01" target="_top">doi:10.18637/jss.v080.i01</a>&gt;; Bürkner (2018) &lt;<a href="https://doi.org/10.32614%2FRJ-2018-017" target="_top">doi:10.32614/RJ-2018-017</a>&gt;; Bürkner (2021) &lt;<a href="https://doi.org/10.18637%2Fjss.v100.i05" target="_top">doi:10.18637/jss.v100.i05</a>&gt;; Carpenter et al. (2017) &lt;<a href="https://doi.org/10.18637%2Fjss.v076.i01" target="_top">doi:10.18637/jss.v076.i01</a>&gt;.



Bing

brms: Bayesian Regression Models using 'Stan'

https://cran.r-project.org/package=brms

Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit &ndash; among others &ndash; linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: Bürkner (2017) &lt;<a href="https://doi.org/10.18637%2Fjss.v080.i01" target="_top">doi:10.18637/jss.v080.i01</a>&gt;; Bürkner (2018) &lt;<a href="https://doi.org/10.32614%2FRJ-2018-017" target="_top">doi:10.32614/RJ-2018-017</a>&gt;; Bürkner (2021) &lt;<a href="https://doi.org/10.18637%2Fjss.v100.i05" target="_top">doi:10.18637/jss.v100.i05</a>&gt;; Carpenter et al. (2017) &lt;<a href="https://doi.org/10.18637%2Fjss.v076.i01" target="_top">doi:10.18637/jss.v076.i01</a>&gt;.



DuckDuckGo

https://cran.r-project.org/package=brms

brms: Bayesian Regression Models using 'Stan'

Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit &ndash; among others &ndash; linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: Bürkner (2017) &lt;<a href="https://doi.org/10.18637%2Fjss.v080.i01" target="_top">doi:10.18637/jss.v080.i01</a>&gt;; Bürkner (2018) &lt;<a href="https://doi.org/10.32614%2FRJ-2018-017" target="_top">doi:10.32614/RJ-2018-017</a>&gt;; Bürkner (2021) &lt;<a href="https://doi.org/10.18637%2Fjss.v100.i05" target="_top">doi:10.18637/jss.v100.i05</a>&gt;; Carpenter et al. (2017) &lt;<a href="https://doi.org/10.18637%2Fjss.v076.i01" target="_top">doi:10.18637/jss.v076.i01</a>&gt;.

  • General Meta Tags

    9
    • title
      CRAN: Package brms
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0, user-scalable=yes
    • citation_title
      Bayesian Regression Models using 'Stan' [R package brms version 2.22.0]
    • citation_author
      Paul-Christian Bürkner
  • Open Graph Meta Tags

    5
    • og:title
      brms: Bayesian Regression Models using 'Stan'
    • og:description
      Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit &ndash; among others &ndash; linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: Bürkner (2017) &lt;<a href="https://doi.org/10.18637%2Fjss.v080.i01" target="_top">doi:10.18637/jss.v080.i01</a>&gt;; Bürkner (2018) &lt;<a href="https://doi.org/10.32614%2FRJ-2018-017" target="_top">doi:10.32614/RJ-2018-017</a>&gt;; Bürkner (2021) &lt;<a href="https://doi.org/10.18637%2Fjss.v100.i05" target="_top">doi:10.18637/jss.v100.i05</a>&gt;; Carpenter et al. (2017) &lt;<a href="https://doi.org/10.18637%2Fjss.v076.i01" target="_top">doi:10.18637/jss.v076.i01</a>&gt;.
    • og:image
      https://CRAN.R-project.org/CRANlogo.png
    • og:type
      website
    • og:url
      https://CRAN.R-project.org/package=brms
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    2
    • canonical
      https://CRAN.R-project.org/package=brms
    • stylesheet
      ../../CRAN_web.css

Links

12