
cran.rstudio.com/web/packages/CRMetrics/index.html
Preview meta tags from the cran.rstudio.com website.
Linked Hostnames
4Thumbnail

Search Engine Appearance
CRMetrics: Cell Ranger Output Filtering and Metrics Visualization
Sample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) <<a href="https://doi.org/10.1038%2Fncomms14049" target="_top">doi:10.1038/ncomms14049</a>>. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) <<a href="https://doi.org/10.1093%2Fgigascience%2Fgiaa151" target="_top">doi:10.1093/gigascience/giaa151</a>> or 'CellBender' by Stephen J Fleming et al. (2022) <<a href="https://doi.org/10.1101%2F791699" target="_top">doi:10.1101/791699</a>>. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) <<a href="https://github.com/kharchenkolab/pagoda2" target="_top">https://github.com/kharchenkolab/pagoda2</a>> or 'Seurat' by Yuhan Hao et al. (2021) <<a href="https://doi.org/10.1016%2Fj.cell.2021.04.048" target="_top">doi:10.1016/j.cell.2021.04.048</a>> followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) <<a href="https://doi.org/10.1038%2Fs41592-019-0466-z" target="_top">doi:10.1038/s41592-019-0466-z</a>>. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) <<a href="https://doi.org/10.1016%2Fj.cels.2018.11.005" target="_top">doi:10.1016/j.cels.2018.11.005</a>> or 'DoubletDetection' by Gayoso et al. (2020) <<a href="https://doi.org/10.5281%2Fzenodo.2678041" target="_top">doi:10.5281/zenodo.2678041</a>>. In the end, cells are filtered based on user input for use in downstream applications.
Bing
CRMetrics: Cell Ranger Output Filtering and Metrics Visualization
Sample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) <<a href="https://doi.org/10.1038%2Fncomms14049" target="_top">doi:10.1038/ncomms14049</a>>. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) <<a href="https://doi.org/10.1093%2Fgigascience%2Fgiaa151" target="_top">doi:10.1093/gigascience/giaa151</a>> or 'CellBender' by Stephen J Fleming et al. (2022) <<a href="https://doi.org/10.1101%2F791699" target="_top">doi:10.1101/791699</a>>. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) <<a href="https://github.com/kharchenkolab/pagoda2" target="_top">https://github.com/kharchenkolab/pagoda2</a>> or 'Seurat' by Yuhan Hao et al. (2021) <<a href="https://doi.org/10.1016%2Fj.cell.2021.04.048" target="_top">doi:10.1016/j.cell.2021.04.048</a>> followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) <<a href="https://doi.org/10.1038%2Fs41592-019-0466-z" target="_top">doi:10.1038/s41592-019-0466-z</a>>. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) <<a href="https://doi.org/10.1016%2Fj.cels.2018.11.005" target="_top">doi:10.1016/j.cels.2018.11.005</a>> or 'DoubletDetection' by Gayoso et al. (2020) <<a href="https://doi.org/10.5281%2Fzenodo.2678041" target="_top">doi:10.5281/zenodo.2678041</a>>. In the end, cells are filtered based on user input for use in downstream applications.
DuckDuckGo
CRMetrics: Cell Ranger Output Filtering and Metrics Visualization
Sample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) <<a href="https://doi.org/10.1038%2Fncomms14049" target="_top">doi:10.1038/ncomms14049</a>>. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) <<a href="https://doi.org/10.1093%2Fgigascience%2Fgiaa151" target="_top">doi:10.1093/gigascience/giaa151</a>> or 'CellBender' by Stephen J Fleming et al. (2022) <<a href="https://doi.org/10.1101%2F791699" target="_top">doi:10.1101/791699</a>>. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) <<a href="https://github.com/kharchenkolab/pagoda2" target="_top">https://github.com/kharchenkolab/pagoda2</a>> or 'Seurat' by Yuhan Hao et al. (2021) <<a href="https://doi.org/10.1016%2Fj.cell.2021.04.048" target="_top">doi:10.1016/j.cell.2021.04.048</a>> followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) <<a href="https://doi.org/10.1038%2Fs41592-019-0466-z" target="_top">doi:10.1038/s41592-019-0466-z</a>>. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) <<a href="https://doi.org/10.1016%2Fj.cels.2018.11.005" target="_top">doi:10.1016/j.cels.2018.11.005</a>> or 'DoubletDetection' by Gayoso et al. (2020) <<a href="https://doi.org/10.5281%2Fzenodo.2678041" target="_top">doi:10.5281/zenodo.2678041</a>>. In the end, cells are filtered based on user input for use in downstream applications.
General Meta Tags
11- titleCRAN: Package CRMetrics
- Content-Typetext/html; charset=utf-8
- viewportwidth=device-width, initial-scale=1.0, user-scalable=yes
- citation_titleCell Ranger Output Filtering and Metrics Visualization [R package CRMetrics version 0.3.2]
- citation_author1Rasmus Rydbirk
Open Graph Meta Tags
5- og:titleCRMetrics: Cell Ranger Output Filtering and Metrics Visualization
- og:descriptionSample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) <<a href="https://doi.org/10.1038%2Fncomms14049" target="_top">doi:10.1038/ncomms14049</a>>. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) <<a href="https://doi.org/10.1093%2Fgigascience%2Fgiaa151" target="_top">doi:10.1093/gigascience/giaa151</a>> or 'CellBender' by Stephen J Fleming et al. (2022) <<a href="https://doi.org/10.1101%2F791699" target="_top">doi:10.1101/791699</a>>. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) <<a href="https://github.com/kharchenkolab/pagoda2" target="_top">https://github.com/kharchenkolab/pagoda2</a>> or 'Seurat' by Yuhan Hao et al. (2021) <<a href="https://doi.org/10.1016%2Fj.cell.2021.04.048" target="_top">doi:10.1016/j.cell.2021.04.048</a>> followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) <<a href="https://doi.org/10.1038%2Fs41592-019-0466-z" target="_top">doi:10.1038/s41592-019-0466-z</a>>. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) <<a href="https://doi.org/10.1016%2Fj.cels.2018.11.005" target="_top">doi:10.1016/j.cels.2018.11.005</a>> or 'DoubletDetection' by Gayoso et al. (2020) <<a href="https://doi.org/10.5281%2Fzenodo.2678041" target="_top">doi:10.5281/zenodo.2678041</a>>. In the end, cells are filtered based on user input for use in downstream applications.
- og:imagehttps://CRAN.R-project.org/CRANlogo.png
- og:typewebsite
- og:urlhttps://CRAN.R-project.org/package=CRMetrics
Twitter Meta Tags
1- twitter:cardsummary
Link Tags
2- canonicalhttps://CRAN.R-project.org/package=CRMetrics
- stylesheet../../CRAN_web.css
Links
15- https://CRAN.R-project.org/package=CRMetrics
- https://CRAN.R-project.org/src/contrib/Archive/CRMetrics
- https://doi.org/10.1016%2Fj.cell.2021.04.048
- https://doi.org/10.1016%2Fj.cels.2018.11.005
- https://doi.org/10.1038%2Fncomms14049