cran.rstudio.com/web/packages/CRMetrics/index.html

Preview meta tags from the cran.rstudio.com website.

Linked Hostnames

4

Thumbnail

Search Engine Appearance

Google

https://cran.rstudio.com/web/packages/CRMetrics/index.html

CRMetrics: Cell Ranger Output Filtering and Metrics Visualization

Sample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) &lt;<a href="https://doi.org/10.1038%2Fncomms14049" target="_top">doi:10.1038/ncomms14049</a>&gt;. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) &lt;<a href="https://doi.org/10.1093%2Fgigascience%2Fgiaa151" target="_top">doi:10.1093/gigascience/giaa151</a>&gt; or 'CellBender' by Stephen J Fleming et al. (2022) &lt;<a href="https://doi.org/10.1101%2F791699" target="_top">doi:10.1101/791699</a>&gt;. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) &lt;<a href="https://github.com/kharchenkolab/pagoda2" target="_top">https://github.com/kharchenkolab/pagoda2</a>&gt; or 'Seurat' by Yuhan Hao et al. (2021) &lt;<a href="https://doi.org/10.1016%2Fj.cell.2021.04.048" target="_top">doi:10.1016/j.cell.2021.04.048</a>&gt; followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) &lt;<a href="https://doi.org/10.1038%2Fs41592-019-0466-z" target="_top">doi:10.1038/s41592-019-0466-z</a>&gt;. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) &lt;<a href="https://doi.org/10.1016%2Fj.cels.2018.11.005" target="_top">doi:10.1016/j.cels.2018.11.005</a>&gt; or 'DoubletDetection' by Gayoso et al. (2020) &lt;<a href="https://doi.org/10.5281%2Fzenodo.2678041" target="_top">doi:10.5281/zenodo.2678041</a>&gt;. In the end, cells are filtered based on user input for use in downstream applications.



Bing

CRMetrics: Cell Ranger Output Filtering and Metrics Visualization

https://cran.rstudio.com/web/packages/CRMetrics/index.html

Sample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) &lt;<a href="https://doi.org/10.1038%2Fncomms14049" target="_top">doi:10.1038/ncomms14049</a>&gt;. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) &lt;<a href="https://doi.org/10.1093%2Fgigascience%2Fgiaa151" target="_top">doi:10.1093/gigascience/giaa151</a>&gt; or 'CellBender' by Stephen J Fleming et al. (2022) &lt;<a href="https://doi.org/10.1101%2F791699" target="_top">doi:10.1101/791699</a>&gt;. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) &lt;<a href="https://github.com/kharchenkolab/pagoda2" target="_top">https://github.com/kharchenkolab/pagoda2</a>&gt; or 'Seurat' by Yuhan Hao et al. (2021) &lt;<a href="https://doi.org/10.1016%2Fj.cell.2021.04.048" target="_top">doi:10.1016/j.cell.2021.04.048</a>&gt; followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) &lt;<a href="https://doi.org/10.1038%2Fs41592-019-0466-z" target="_top">doi:10.1038/s41592-019-0466-z</a>&gt;. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) &lt;<a href="https://doi.org/10.1016%2Fj.cels.2018.11.005" target="_top">doi:10.1016/j.cels.2018.11.005</a>&gt; or 'DoubletDetection' by Gayoso et al. (2020) &lt;<a href="https://doi.org/10.5281%2Fzenodo.2678041" target="_top">doi:10.5281/zenodo.2678041</a>&gt;. In the end, cells are filtered based on user input for use in downstream applications.



DuckDuckGo

https://cran.rstudio.com/web/packages/CRMetrics/index.html

CRMetrics: Cell Ranger Output Filtering and Metrics Visualization

Sample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) &lt;<a href="https://doi.org/10.1038%2Fncomms14049" target="_top">doi:10.1038/ncomms14049</a>&gt;. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) &lt;<a href="https://doi.org/10.1093%2Fgigascience%2Fgiaa151" target="_top">doi:10.1093/gigascience/giaa151</a>&gt; or 'CellBender' by Stephen J Fleming et al. (2022) &lt;<a href="https://doi.org/10.1101%2F791699" target="_top">doi:10.1101/791699</a>&gt;. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) &lt;<a href="https://github.com/kharchenkolab/pagoda2" target="_top">https://github.com/kharchenkolab/pagoda2</a>&gt; or 'Seurat' by Yuhan Hao et al. (2021) &lt;<a href="https://doi.org/10.1016%2Fj.cell.2021.04.048" target="_top">doi:10.1016/j.cell.2021.04.048</a>&gt; followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) &lt;<a href="https://doi.org/10.1038%2Fs41592-019-0466-z" target="_top">doi:10.1038/s41592-019-0466-z</a>&gt;. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) &lt;<a href="https://doi.org/10.1016%2Fj.cels.2018.11.005" target="_top">doi:10.1016/j.cels.2018.11.005</a>&gt; or 'DoubletDetection' by Gayoso et al. (2020) &lt;<a href="https://doi.org/10.5281%2Fzenodo.2678041" target="_top">doi:10.5281/zenodo.2678041</a>&gt;. In the end, cells are filtered based on user input for use in downstream applications.

  • General Meta Tags

    11
    • title
      CRAN: Package CRMetrics
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0, user-scalable=yes
    • citation_title
      Cell Ranger Output Filtering and Metrics Visualization [R package CRMetrics version 0.3.2]
    • citation_author1
      Rasmus Rydbirk
  • Open Graph Meta Tags

    5
    • og:title
      CRMetrics: Cell Ranger Output Filtering and Metrics Visualization
    • og:description
      Sample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) &lt;<a href="https://doi.org/10.1038%2Fncomms14049" target="_top">doi:10.1038/ncomms14049</a>&gt;. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) &lt;<a href="https://doi.org/10.1093%2Fgigascience%2Fgiaa151" target="_top">doi:10.1093/gigascience/giaa151</a>&gt; or 'CellBender' by Stephen J Fleming et al. (2022) &lt;<a href="https://doi.org/10.1101%2F791699" target="_top">doi:10.1101/791699</a>&gt;. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) &lt;<a href="https://github.com/kharchenkolab/pagoda2" target="_top">https://github.com/kharchenkolab/pagoda2</a>&gt; or 'Seurat' by Yuhan Hao et al. (2021) &lt;<a href="https://doi.org/10.1016%2Fj.cell.2021.04.048" target="_top">doi:10.1016/j.cell.2021.04.048</a>&gt; followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) &lt;<a href="https://doi.org/10.1038%2Fs41592-019-0466-z" target="_top">doi:10.1038/s41592-019-0466-z</a>&gt;. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) &lt;<a href="https://doi.org/10.1016%2Fj.cels.2018.11.005" target="_top">doi:10.1016/j.cels.2018.11.005</a>&gt; or 'DoubletDetection' by Gayoso et al. (2020) &lt;<a href="https://doi.org/10.5281%2Fzenodo.2678041" target="_top">doi:10.5281/zenodo.2678041</a>&gt;. In the end, cells are filtered based on user input for use in downstream applications.
    • og:image
      https://CRAN.R-project.org/CRANlogo.png
    • og:type
      website
    • og:url
      https://CRAN.R-project.org/package=CRMetrics
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    2
    • canonical
      https://CRAN.R-project.org/package=CRMetrics
    • stylesheet
      ../../CRAN_web.css

Links

15