cran.rstudio.com/web/packages/Coxmos/index.html

Preview meta tags from the cran.rstudio.com website.

Linked Hostnames

6

Thumbnail

Search Engine Appearance

Google

https://cran.rstudio.com/web/packages/Coxmos/index.html

Coxmos: Cox MultiBlock Survival

This software package provides Cox survival analysis for high-dimensional and multiblock datasets. It encompasses a suite of functions dedicated from the classical Cox regression to newest analysis, including Cox proportional hazards model, Stepwise Cox regression, and Elastic-Net Cox regression, Sparse Partial Least Squares Cox regression (sPLS-COX) incorporating three distinct strategies, and two Multiblock-PLS Cox regression (MB-sPLS-COX) methods. This tool is designed to adeptly handle high-dimensional data, and provides tools for cross-validation, plot generation, and additional resources for interpreting results. While references are available within the corresponding functions, key literature is mentioned below. Terry M Therneau (2024) &lt;<a href="https://CRAN.R-project.org/package=survival" target="_top">https://CRAN.R-project.org/package=survival</a>&gt;, Noah Simon et al. (2011) &lt;<a href="https://doi.org/10.18637%2Fjss.v039.i05" target="_top">doi:10.18637/jss.v039.i05</a>&gt;, Philippe Bastien et al. (2005) &lt;<a href="https://doi.org/10.1016%2Fj.csda.2004.02.005" target="_top">doi:10.1016/j.csda.2004.02.005</a>&gt;, Philippe Bastien (2008) &lt;<a href="https://doi.org/10.1016%2Fj.chemolab.2007.09.009" target="_top">doi:10.1016/j.chemolab.2007.09.009</a>&gt;, Philippe Bastien et al. (2014) &lt;<a href="https://doi.org/10.1093%2Fbioinformatics%2Fbtu660" target="_top">doi:10.1093/bioinformatics/btu660</a>&gt;, Kassu Mehari Beyene and Anouar El Ghouch (2020) &lt;<a href="https://doi.org/10.1002%2Fsim.8671" target="_top">doi:10.1002/sim.8671</a>&gt;, Florian Rohart et al. (2017) &lt;<a href="https://doi.org/10.1371%2Fjournal.pcbi.1005752" target="_top">doi:10.1371/journal.pcbi.1005752</a>&gt;.



Bing

Coxmos: Cox MultiBlock Survival

https://cran.rstudio.com/web/packages/Coxmos/index.html

This software package provides Cox survival analysis for high-dimensional and multiblock datasets. It encompasses a suite of functions dedicated from the classical Cox regression to newest analysis, including Cox proportional hazards model, Stepwise Cox regression, and Elastic-Net Cox regression, Sparse Partial Least Squares Cox regression (sPLS-COX) incorporating three distinct strategies, and two Multiblock-PLS Cox regression (MB-sPLS-COX) methods. This tool is designed to adeptly handle high-dimensional data, and provides tools for cross-validation, plot generation, and additional resources for interpreting results. While references are available within the corresponding functions, key literature is mentioned below. Terry M Therneau (2024) &lt;<a href="https://CRAN.R-project.org/package=survival" target="_top">https://CRAN.R-project.org/package=survival</a>&gt;, Noah Simon et al. (2011) &lt;<a href="https://doi.org/10.18637%2Fjss.v039.i05" target="_top">doi:10.18637/jss.v039.i05</a>&gt;, Philippe Bastien et al. (2005) &lt;<a href="https://doi.org/10.1016%2Fj.csda.2004.02.005" target="_top">doi:10.1016/j.csda.2004.02.005</a>&gt;, Philippe Bastien (2008) &lt;<a href="https://doi.org/10.1016%2Fj.chemolab.2007.09.009" target="_top">doi:10.1016/j.chemolab.2007.09.009</a>&gt;, Philippe Bastien et al. (2014) &lt;<a href="https://doi.org/10.1093%2Fbioinformatics%2Fbtu660" target="_top">doi:10.1093/bioinformatics/btu660</a>&gt;, Kassu Mehari Beyene and Anouar El Ghouch (2020) &lt;<a href="https://doi.org/10.1002%2Fsim.8671" target="_top">doi:10.1002/sim.8671</a>&gt;, Florian Rohart et al. (2017) &lt;<a href="https://doi.org/10.1371%2Fjournal.pcbi.1005752" target="_top">doi:10.1371/journal.pcbi.1005752</a>&gt;.



DuckDuckGo

https://cran.rstudio.com/web/packages/Coxmos/index.html

Coxmos: Cox MultiBlock Survival

This software package provides Cox survival analysis for high-dimensional and multiblock datasets. It encompasses a suite of functions dedicated from the classical Cox regression to newest analysis, including Cox proportional hazards model, Stepwise Cox regression, and Elastic-Net Cox regression, Sparse Partial Least Squares Cox regression (sPLS-COX) incorporating three distinct strategies, and two Multiblock-PLS Cox regression (MB-sPLS-COX) methods. This tool is designed to adeptly handle high-dimensional data, and provides tools for cross-validation, plot generation, and additional resources for interpreting results. While references are available within the corresponding functions, key literature is mentioned below. Terry M Therneau (2024) &lt;<a href="https://CRAN.R-project.org/package=survival" target="_top">https://CRAN.R-project.org/package=survival</a>&gt;, Noah Simon et al. (2011) &lt;<a href="https://doi.org/10.18637%2Fjss.v039.i05" target="_top">doi:10.18637/jss.v039.i05</a>&gt;, Philippe Bastien et al. (2005) &lt;<a href="https://doi.org/10.1016%2Fj.csda.2004.02.005" target="_top">doi:10.1016/j.csda.2004.02.005</a>&gt;, Philippe Bastien (2008) &lt;<a href="https://doi.org/10.1016%2Fj.chemolab.2007.09.009" target="_top">doi:10.1016/j.chemolab.2007.09.009</a>&gt;, Philippe Bastien et al. (2014) &lt;<a href="https://doi.org/10.1093%2Fbioinformatics%2Fbtu660" target="_top">doi:10.1093/bioinformatics/btu660</a>&gt;, Kassu Mehari Beyene and Anouar El Ghouch (2020) &lt;<a href="https://doi.org/10.1002%2Fsim.8671" target="_top">doi:10.1002/sim.8671</a>&gt;, Florian Rohart et al. (2017) &lt;<a href="https://doi.org/10.1371%2Fjournal.pcbi.1005752" target="_top">doi:10.1371/journal.pcbi.1005752</a>&gt;.

  • General Meta Tags

    9
    • title
      CRAN: Package Coxmos
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0, user-scalable=yes
    • citation_title
      Cox MultiBlock Survival [R package Coxmos version 1.1.3]
    • citation_author
      Pedro Salguero García
  • Open Graph Meta Tags

    5
    • og:title
      Coxmos: Cox MultiBlock Survival
    • og:description
      This software package provides Cox survival analysis for high-dimensional and multiblock datasets. It encompasses a suite of functions dedicated from the classical Cox regression to newest analysis, including Cox proportional hazards model, Stepwise Cox regression, and Elastic-Net Cox regression, Sparse Partial Least Squares Cox regression (sPLS-COX) incorporating three distinct strategies, and two Multiblock-PLS Cox regression (MB-sPLS-COX) methods. This tool is designed to adeptly handle high-dimensional data, and provides tools for cross-validation, plot generation, and additional resources for interpreting results. While references are available within the corresponding functions, key literature is mentioned below. Terry M Therneau (2024) &lt;<a href="https://CRAN.R-project.org/package=survival" target="_top">https://CRAN.R-project.org/package=survival</a>&gt;, Noah Simon et al. (2011) &lt;<a href="https://doi.org/10.18637%2Fjss.v039.i05" target="_top">doi:10.18637/jss.v039.i05</a>&gt;, Philippe Bastien et al. (2005) &lt;<a href="https://doi.org/10.1016%2Fj.csda.2004.02.005" target="_top">doi:10.1016/j.csda.2004.02.005</a>&gt;, Philippe Bastien (2008) &lt;<a href="https://doi.org/10.1016%2Fj.chemolab.2007.09.009" target="_top">doi:10.1016/j.chemolab.2007.09.009</a>&gt;, Philippe Bastien et al. (2014) &lt;<a href="https://doi.org/10.1093%2Fbioinformatics%2Fbtu660" target="_top">doi:10.1093/bioinformatics/btu660</a>&gt;, Kassu Mehari Beyene and Anouar El Ghouch (2020) &lt;<a href="https://doi.org/10.1002%2Fsim.8671" target="_top">doi:10.1002/sim.8671</a>&gt;, Florian Rohart et al. (2017) &lt;<a href="https://doi.org/10.1371%2Fjournal.pcbi.1005752" target="_top">doi:10.1371/journal.pcbi.1005752</a>&gt;.
    • og:image
      https://CRAN.R-project.org/CRANlogo.png
    • og:type
      website
    • og:url
      https://CRAN.R-project.org/package=Coxmos
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    2
    • canonical
      https://CRAN.R-project.org/package=Coxmos
    • stylesheet
      ../../CRAN_web.css

Links

16