cran.rstudio.com/web/packages/GeneSelectR/index.html

Preview meta tags from the cran.rstudio.com website.

Linked Hostnames

6

Thumbnail

Search Engine Appearance

Google

https://cran.rstudio.com/web/packages/GeneSelectR/index.html

GeneSelectR: 'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets

The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (&lt;<a href="https://scikit-learn.org/stable/index.html" target="_top">https://scikit-learn.org/stable/index.html</a>&gt;) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) &lt;<a href="https://doi.org/10.1002%2Fpro.4218" target="_top">doi:10.1002/pro.4218</a>&gt;, using 'clusterProfiler' (Wu et al., 2021) &lt;<a href="https://doi.org/10.1016%2Fj.xinn.2021.100141" target="_top">doi:10.1016/j.xinn.2021.100141</a>&gt; and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) &lt;<a href="https://doi.org/10.1016%2Fj.gpb.2022.04.008" target="_top">doi:10.1016/j.gpb.2022.04.008</a>&gt;. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.



Bing

GeneSelectR: 'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets

https://cran.rstudio.com/web/packages/GeneSelectR/index.html

The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (&lt;<a href="https://scikit-learn.org/stable/index.html" target="_top">https://scikit-learn.org/stable/index.html</a>&gt;) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) &lt;<a href="https://doi.org/10.1002%2Fpro.4218" target="_top">doi:10.1002/pro.4218</a>&gt;, using 'clusterProfiler' (Wu et al., 2021) &lt;<a href="https://doi.org/10.1016%2Fj.xinn.2021.100141" target="_top">doi:10.1016/j.xinn.2021.100141</a>&gt; and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) &lt;<a href="https://doi.org/10.1016%2Fj.gpb.2022.04.008" target="_top">doi:10.1016/j.gpb.2022.04.008</a>&gt;. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.



DuckDuckGo

https://cran.rstudio.com/web/packages/GeneSelectR/index.html

GeneSelectR: 'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets

The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (&lt;<a href="https://scikit-learn.org/stable/index.html" target="_top">https://scikit-learn.org/stable/index.html</a>&gt;) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) &lt;<a href="https://doi.org/10.1002%2Fpro.4218" target="_top">doi:10.1002/pro.4218</a>&gt;, using 'clusterProfiler' (Wu et al., 2021) &lt;<a href="https://doi.org/10.1016%2Fj.xinn.2021.100141" target="_top">doi:10.1016/j.xinn.2021.100141</a>&gt; and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) &lt;<a href="https://doi.org/10.1016%2Fj.gpb.2022.04.008" target="_top">doi:10.1016/j.gpb.2022.04.008</a>&gt;. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.

  • General Meta Tags

    9
    • title
      CRAN: Package GeneSelectR
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0, user-scalable=yes
    • citation_title
      'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets [R package GeneSelectR version 1.0.1]
    • citation_author
      Damir Zhakparov
  • Open Graph Meta Tags

    5
    • og:title
      GeneSelectR: 'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets
    • og:description
      The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (&lt;<a href="https://scikit-learn.org/stable/index.html" target="_top">https://scikit-learn.org/stable/index.html</a>&gt;) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) &lt;<a href="https://doi.org/10.1002%2Fpro.4218" target="_top">doi:10.1002/pro.4218</a>&gt;, using 'clusterProfiler' (Wu et al., 2021) &lt;<a href="https://doi.org/10.1016%2Fj.xinn.2021.100141" target="_top">doi:10.1016/j.xinn.2021.100141</a>&gt; and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) &lt;<a href="https://doi.org/10.1016%2Fj.gpb.2022.04.008" target="_top">doi:10.1016/j.gpb.2022.04.008</a>&gt;. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.
    • og:image
      https://CRAN.R-project.org/CRANlogo.png
    • og:type
      website
    • og:url
      https://CRAN.R-project.org/package=GeneSelectR
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    2
    • canonical
      https://CRAN.R-project.org/package=GeneSelectR
    • stylesheet
      ../../CRAN_web.css

Links

16