
cran.rstudio.com/web/packages/GeneSelectR/index.html
Preview meta tags from the cran.rstudio.com website.
Linked Hostnames
6- 6 links towww.bioconductor.org
- 4 links todoi.org
- 2 links tocran.r-project.org
- 2 links togithub.com
- 1 link toorcid.org
- 1 link toscikit-learn.org
Thumbnail

Search Engine Appearance
GeneSelectR: 'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets
The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (<<a href="https://scikit-learn.org/stable/index.html" target="_top">https://scikit-learn.org/stable/index.html</a>>) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) <<a href="https://doi.org/10.1002%2Fpro.4218" target="_top">doi:10.1002/pro.4218</a>>, using 'clusterProfiler' (Wu et al., 2021) <<a href="https://doi.org/10.1016%2Fj.xinn.2021.100141" target="_top">doi:10.1016/j.xinn.2021.100141</a>> and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) <<a href="https://doi.org/10.1016%2Fj.gpb.2022.04.008" target="_top">doi:10.1016/j.gpb.2022.04.008</a>>. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.
Bing
GeneSelectR: 'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets
The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (<<a href="https://scikit-learn.org/stable/index.html" target="_top">https://scikit-learn.org/stable/index.html</a>>) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) <<a href="https://doi.org/10.1002%2Fpro.4218" target="_top">doi:10.1002/pro.4218</a>>, using 'clusterProfiler' (Wu et al., 2021) <<a href="https://doi.org/10.1016%2Fj.xinn.2021.100141" target="_top">doi:10.1016/j.xinn.2021.100141</a>> and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) <<a href="https://doi.org/10.1016%2Fj.gpb.2022.04.008" target="_top">doi:10.1016/j.gpb.2022.04.008</a>>. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.
DuckDuckGo
GeneSelectR: 'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets
The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (<<a href="https://scikit-learn.org/stable/index.html" target="_top">https://scikit-learn.org/stable/index.html</a>>) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) <<a href="https://doi.org/10.1002%2Fpro.4218" target="_top">doi:10.1002/pro.4218</a>>, using 'clusterProfiler' (Wu et al., 2021) <<a href="https://doi.org/10.1016%2Fj.xinn.2021.100141" target="_top">doi:10.1016/j.xinn.2021.100141</a>> and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) <<a href="https://doi.org/10.1016%2Fj.gpb.2022.04.008" target="_top">doi:10.1016/j.gpb.2022.04.008</a>>. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.
General Meta Tags
9- titleCRAN: Package GeneSelectR
- Content-Typetext/html; charset=utf-8
- viewportwidth=device-width, initial-scale=1.0, user-scalable=yes
- citation_title'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets [R package GeneSelectR version 1.0.1]
- citation_authorDamir Zhakparov
Open Graph Meta Tags
5- og:titleGeneSelectR: 'GeneSelectR' - Comprehensive Feature Selection Workflow for Bulk RNAseq Datasets
- og:descriptionThe workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (<<a href="https://scikit-learn.org/stable/index.html" target="_top">https://scikit-learn.org/stable/index.html</a>>) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) <<a href="https://doi.org/10.1002%2Fpro.4218" target="_top">doi:10.1002/pro.4218</a>>, using 'clusterProfiler' (Wu et al., 2021) <<a href="https://doi.org/10.1016%2Fj.xinn.2021.100141" target="_top">doi:10.1016/j.xinn.2021.100141</a>> and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) <<a href="https://doi.org/10.1016%2Fj.gpb.2022.04.008" target="_top">doi:10.1016/j.gpb.2022.04.008</a>>. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.
- og:imagehttps://CRAN.R-project.org/CRANlogo.png
- og:typewebsite
- og:urlhttps://CRAN.R-project.org/package=GeneSelectR
Twitter Meta Tags
1- twitter:cardsummary
Link Tags
2- canonicalhttps://CRAN.R-project.org/package=GeneSelectR
- stylesheet../../CRAN_web.css
Links
16- https://CRAN.R-project.org/package=GeneSelectR
- https://CRAN.R-project.org/src/contrib/Archive/GeneSelectR
- https://doi.org/10.1002%2Fpro.4218
- https://doi.org/10.1016%2Fj.gpb.2022.04.008
- https://doi.org/10.1016%2Fj.xinn.2021.100141