discuss.pytorch.org/t/confusing-about-the-dimension-of-seq2seq-model/185235/2

Preview meta tags from the discuss.pytorch.org website.

Linked Hostnames

2

Thumbnail

Search Engine Appearance

Google

https://discuss.pytorch.org/t/confusing-about-the-dimension-of-seq2seq-model/185235/2

Confusing about the dimension of Seq2Seq model

I am new to Seq2Seq and hope to find a proper guildances, advices. I am doing a Project from an online course so I can not give the material but I got my Project notebook on Github I want to ask about my understandin…



Bing

Confusing about the dimension of Seq2Seq model

https://discuss.pytorch.org/t/confusing-about-the-dimension-of-seq2seq-model/185235/2

I am new to Seq2Seq and hope to find a proper guildances, advices. I am doing a Project from an online course so I can not give the material but I got my Project notebook on Github I want to ask about my understandin…



DuckDuckGo

https://discuss.pytorch.org/t/confusing-about-the-dimension-of-seq2seq-model/185235/2

Confusing about the dimension of Seq2Seq model

I am new to Seq2Seq and hope to find a proper guildances, advices. I am doing a Project from an online course so I can not give the material but I got my Project notebook on Github I want to ask about my understandin…

  • General Meta Tags

    8
    • title
      Confusing about the dimension of Seq2Seq model - #2 by vdw - nlp - PyTorch Forums
    • charset
      utf-8
    • description
      I am new to Seq2Seq and hope to find a proper guildances, advices. I am doing a Project from an online course so I can not give the material but I got my Project notebook on Github I want to ask about my understandin…
    • generator
      Discourse 3.5.0.beta9-dev - https://github.com/discourse/discourse version eecb0729f2a8c0acae887fa2c86457aaeedd3d44
    • theme-color
      #fff
  • Open Graph Meta Tags

    9
    • og:site_name
      PyTorch Forums
    • og:type
      website
    • og:image
      https://discuss.pytorch.org/uploads/default/original/2X/1/15a7e2573aeb9e6ba8995f824d3b63171a433041.png
    • og:url
      https://discuss.pytorch.org/t/confusing-about-the-dimension-of-seq2seq-model/185235/2
    • og:title
      Confusing about the dimension of Seq2Seq model
  • Twitter Meta Tags

    5
    • twitter:card
      summary
    • twitter:image
      https://discuss.pytorch.org/uploads/default/original/2X/1/15a7e2573aeb9e6ba8995f824d3b63171a433041.png
    • twitter:url
      https://discuss.pytorch.org/t/confusing-about-the-dimension-of-seq2seq-model/185235/2
    • twitter:title
      Confusing about the dimension of Seq2Seq model
    • twitter:description
      Yes, the input for the encoder is (batch_size, seq_len). Each sequence in a batch is a list/array of integers reflecting the indices of the tokens in the vocabulary. For example, a match might look like this: [ [12, 40, 8, 105, 86, 6], [35, 105, 86, 35, 40, 6] ] Representing the 2 sentences “i like to watch movies .” and “you watch movies you like .” This means your vocabulary provides a mapping like {6: ".", 8: "to", 12: "i", 35: "you", 40: "like", ...} There is no need to convert ...
  • Item Prop Meta Tags

    12
    • position
      1
    • headline
      Confusing about the dimension of Seq2Seq model
    • datePublished
      2023-07-28T07:15:03Z
    • articleSection
      nlp
    • keywords
  • Link Tags

    26
    • alternate nofollow
      https://discuss.pytorch.org/t/confusing-about-the-dimension-of-seq2seq-model/185235.rss
    • apple-touch-icon
      https://discuss.pytorch.org/uploads/default/optimized/2X/3/38d28fd067a1a8f263e14507942b2e38e49b771a_2_180x180.png
    • canonical
      https://discuss.pytorch.org/t/confusing-about-the-dimension-of-seq2seq-model/185235
    • icon
      https://discuss.pytorch.org/uploads/default/optimized/2X/b/bb2eeaba4e9f7e4a5944a0d83f52c4f2bf1b6a85_2_32x32.png
    • url
      https://discuss.pytorch.org/u/QUANG_HUY_CHU

Links

11