doi.org/10.1007/978-3-642-21286-4_10
Preview meta tags from the doi.org website.
Linked Hostnames
21- 17 links tolink.springer.com
- 17 links toscholar.google.com
- 16 links todoi.org
- 11 links towww.springernature.com
- 9 links towww.ams.org
- 9 links towww.emis.de
- 4 links tocitation-needed.springer.com
- 3 links tosupport.springernature.com
Thumbnail

Search Engine Appearance
Efficient Generation of Networks with Given Expected Degrees
We present an efficient algorithm to generate random graphs with a given sequence of expected degrees. Existing algorithms run in $\mathcal{O}(N^2)$ time where N is the number of...
Bing
Efficient Generation of Networks with Given Expected Degrees
We present an efficient algorithm to generate random graphs with a given sequence of expected degrees. Existing algorithms run in $\mathcal{O}(N^2)$ time where N is the number of...
DuckDuckGo
Efficient Generation of Networks with Given Expected Degrees
We present an efficient algorithm to generate random graphs with a given sequence of expected degrees. Existing algorithms run in $\mathcal{O}(N^2)$ time where N is the number of...
General Meta Tags
37- titleEfficient Generation of Networks with Given Expected Degrees | SpringerLink
- charsetUTF-8
- X-UA-CompatibleIE=edge
- viewportwidth=device-width, initial-scale=1
- applicable-devicepc,mobile
Open Graph Meta Tags
6- og:urlhttps://link.springer.com/chapter/10.1007/978-3-642-21286-4_10
- og:typePaper
- og:site_nameSpringerLink
- og:titleEfficient Generation of Networks with Given Expected Degrees
- og:descriptionWe present an efficient algorithm to generate random graphs with a given sequence of expected degrees. Existing algorithms run in $\mathcal{O}(N^2)$ time where N is the number of...
Twitter Meta Tags
6- twitter:siteSpringerLink
- twitter:cardsummary
- twitter:image:altContent cover image
- twitter:titleEfficient Generation of Networks with Given Expected Degrees
- twitter:descriptionWe present an efficient algorithm to generate random graphs with a given sequence of expected degrees. Existing algorithms run in $\mathcal{O}(N^2)$ time where N is the number of...
Item Prop Meta Tags
3- position1
- position2
- position3
Link Tags
9- apple-touch-icon/oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
- canonicalhttps://link.springer.com/chapter/10.1007/978-3-642-21286-4_10
- icon/oscar-static/img/favicons/darwin/android-chrome-192x192.png
- icon/oscar-static/img/favicons/darwin/favicon-32x32.png
- icon/oscar-static/img/favicons/darwin/favicon-16x16.png
Links
101- http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Aric%20Hagberg%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Joel%20C.%20Miller%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- http://www.ams.org/mathscinet-getitem?mr=1955514
- http://www.ams.org/mathscinet-getitem?mr=2010377
- http://www.ams.org/mathscinet-getitem?mr=2076728