doi.org/10.1007/BF02187784
Preview meta tags from the doi.org website.
Linked Hostnames
22- 27 links todoi.org
- 24 links toscholar.google.com
- 23 links tolink.springer.com
- 18 links towww.emis.de
- 15 links towww.ams.org
- 9 links towww.springernature.com
- 3 links toscholar.google.co.uk
- 3 links towww.ncbi.nlm.nih.gov
Thumbnail
Search Engine Appearance
https://doi.org/10.1007/BF02187784
The complexity and construction of many faces in arrangements of lines and of segments - Discrete & Computational Geometry
We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3−δ n 2/3+2δ +n) for anyδ>0.
Bing
The complexity and construction of many faces in arrangements of lines and of segments - Discrete & Computational Geometry
https://doi.org/10.1007/BF02187784
We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3−δ n 2/3+2δ +n) for anyδ>0.
DuckDuckGo
The complexity and construction of many faces in arrangements of lines and of segments - Discrete & Computational Geometry
We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3−δ n 2/3+2δ +n) for anyδ>0.
General Meta Tags
100- titleThe complexity and construction of many faces in arrangements of lines and of segments | Discrete & Computational Geometry
- charsetUTF-8
- X-UA-CompatibleIE=edge
- applicable-devicepc,mobile
- viewportwidth=device-width, initial-scale=1
Open Graph Meta Tags
6- og:urlhttps://link.springer.com/article/10.1007/BF02187784
- og:typearticle
- og:site_nameSpringerLink
- og:titleThe complexity and construction of many faces in arrangements of lines and of segments - Discrete & Computational Geometry
- og:descriptionWe show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3−δ n 2/3+2δ +n) for anyδ>0. The proof takes an algorithmic approach, that is, we describe an algorithm for the calculation of thesem faces and derive the upper bound from the analysis of the algorithm. The algorithm uses randomization and its expected time complexity isO(m 2/3−δ n 2/3+2δ logn+n logn logm). If instead of lines we have an arrangement ofn line segments, then the maximum number of edges ofm faces isO(m 2/3−δ n 2/3+2δ +nα (n) logm) for anyδ>0, whereα(n) is the functional inverse of Ackermann's function. We give a (randomized) algorithm that produces these faces and takes expected timeO(m 2/3−δ n 2/3+2δ log+nα(n) log2 n logm).
Twitter Meta Tags
6- twitter:site@SpringerLink
- twitter:cardsummary_large_image
- twitter:image:altContent cover image
- twitter:titleThe complexity and construction of many faces in arrangements of lines and of segments
- twitter:descriptionDiscrete & Computational Geometry - We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3−δ n 2/3+2δ +n) for anyδ>0....
Item Prop Meta Tags
3- position1
- position2
- position3
Link Tags
9- apple-touch-icon/oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
- canonicalhttps://link.springer.com/article/10.1007/BF02187784
- icon/oscar-static/img/favicons/darwin/android-chrome-192x192.png
- icon/oscar-static/img/favicons/darwin/favicon-32x32.png
- icon/oscar-static/img/favicons/darwin/favicon-16x16.png
Links
138- http://scholar.google.com/scholar_lookup?&title=A%20theorem%20on%20arrangements%20of%20lines%20in%20the%20plane&journal=Isreal%20J.%20Math.&doi=10.1007%2FBF02788872&volume=7&pages=393-397&publication_year=1969&author=Canham%2CR.%20J.
- http://scholar.google.com/scholar_lookup?&title=Algorithms%20for%20reporting%20and%20counting%20geometric%20intersections&journal=IEEE%20Trans.%20Comput.&doi=10.1109%2FTC.1979.1675432&volume=28&pages=643-647&publication_year=1979&author=Bentley%2CJ.%20L.&author=Ottmann%2CT.%20A.
- http://scholar.google.com/scholar_lookup?&title=Algorithms%20in%20Combinatorial%20Geometry&doi=10.1007%2F978-3-642-61568-9&publication_year=1987&author=Edelsbrunner%2CH.
- http://scholar.google.com/scholar_lookup?&title=Computational%20Geometry%E2%80%94An%20Introduction&publication_year=1985&author=Preparata%2CF.%20P.&author=Shamos%2CM.%20I.
- http://scholar.google.com/scholar_lookup?&title=Constructing%20arrangements%20of%20lines%20and%20hyperplanes%20with%20applications&journal=SIAM%20J.%20Comput.&doi=10.1137%2F0215024&volume=15&pages=341-363&publication_year=1986&author=Edelsbrunner%2CH.&author=O%27Rourke%2CJ.&author=Seidel%2CR.