doi.org/10.1007/s00033-024-02273-0

Preview meta tags from the doi.org website.

Linked Hostnames

24

Thumbnail

Search Engine Appearance

Google

https://doi.org/10.1007/s00033-024-02273-0

Stability of solitary wave solutions in the Lugiato–Lefever equation - Zeitschrift für angewandte Mathematik und Physik

We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ . Our interest lies in



Bing

Stability of solitary wave solutions in the Lugiato–Lefever equation - Zeitschrift für angewandte Mathematik und Physik

https://doi.org/10.1007/s00033-024-02273-0

We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ . Our interest lies in



DuckDuckGo

https://doi.org/10.1007/s00033-024-02273-0

Stability of solitary wave solutions in the Lugiato–Lefever equation - Zeitschrift für angewandte Mathematik und Physik

We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ . Our interest lies in

  • General Meta Tags

    112
    • title
      Stability of solitary wave solutions in the Lugiato–Lefever equation | Zeitschrift für angewandte Mathematik und Physik
    • charset
      UTF-8
    • X-UA-Compatible
      IE=edge
    • applicable-device
      pc,mobile
    • viewport
      width=device-width, initial-scale=1
  • Open Graph Meta Tags

    6
    • og:url
      https://link.springer.com/article/10.1007/s00033-024-02273-0
    • og:type
      article
    • og:site_name
      SpringerLink
    • og:title
      Stability of solitary wave solutions in the Lugiato–Lefever equation - Zeitschrift für angewandte Mathematik und Physik
    • og:description
      We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ R . Our interest lies in solutions that arise through bifurcations from the phase-shifted bright soliton of the nonlinear Schrödinger equation. These solutions are highly nonlinear, localized, far-from-equilibrium waves, and are the physical relevant solutions to model Kerr frequency combs. We show that bifurcating solitary waves are spectrally stable when the phase angle satisfies $$\theta \in (0,\pi )$$ θ ∈ ( 0 , π ) , while unstable waves are found for angles $$\theta \in (\pi ,2\pi )$$ θ ∈ ( π , 2 π ) . Furthermore, we establish asymptotic orbital stability of spectrally stable solitary waves against localized perturbations. Our analysis exploits the Lyapunov–Schmidt reduction method, the instability index count developed for linear Hamiltonian systems, and resolvent estimates.
  • Twitter Meta Tags

    6
    • twitter:site
      @SpringerLink
    • twitter:card
      summary_large_image
    • twitter:image:alt
      Content cover image
    • twitter:title
      Stability of solitary wave solutions in the Lugiato–Lefever equation
    • twitter:description
      Zeitschrift für angewandte Mathematik und Physik - We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ . Our...
  • Item Prop Meta Tags

    3
    • position
      1
    • position
      2
    • position
      3
  • Link Tags

    9
    • apple-touch-icon
      /oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
    • canonical
      https://link.springer.com/article/10.1007/s00033-024-02273-0
    • icon
      /oscar-static/img/favicons/darwin/android-chrome-192x192.png
    • icon
      /oscar-static/img/favicons/darwin/favicon-32x32.png
    • icon
      /oscar-static/img/favicons/darwin/favicon-16x16.png

Emails

1

Links

228