doi.org/10.1007/s00033-024-02273-0
Preview meta tags from the doi.org website.
Linked Hostnames
24- 130 links todoi.org
- 37 links toscholar.google.com
- 19 links towww.ams.org
- 12 links tolink.springer.com
- 9 links towww.springernature.com
- 2 links tocitation-needed.springer.com
- 2 links tosupport.springernature.com
- 1 link toarxiv.org
Thumbnail

Search Engine Appearance
https://doi.org/10.1007/s00033-024-02273-0
Stability of solitary wave solutions in the Lugiato–Lefever equation - Zeitschrift für angewandte Mathematik und Physik
We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ . Our interest lies in
Bing
Stability of solitary wave solutions in the Lugiato–Lefever equation - Zeitschrift für angewandte Mathematik und Physik
https://doi.org/10.1007/s00033-024-02273-0
We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ . Our interest lies in
DuckDuckGo
Stability of solitary wave solutions in the Lugiato–Lefever equation - Zeitschrift für angewandte Mathematik und Physik
We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ . Our interest lies in
General Meta Tags
112- titleStability of solitary wave solutions in the Lugiato–Lefever equation | Zeitschrift für angewandte Mathematik und Physik
- charsetUTF-8
- X-UA-CompatibleIE=edge
- applicable-devicepc,mobile
- viewportwidth=device-width, initial-scale=1
Open Graph Meta Tags
6- og:urlhttps://link.springer.com/article/10.1007/s00033-024-02273-0
- og:typearticle
- og:site_nameSpringerLink
- og:titleStability of solitary wave solutions in the Lugiato–Lefever equation - Zeitschrift für angewandte Mathematik und Physik
- og:descriptionWe analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ R . Our interest lies in solutions that arise through bifurcations from the phase-shifted bright soliton of the nonlinear Schrödinger equation. These solutions are highly nonlinear, localized, far-from-equilibrium waves, and are the physical relevant solutions to model Kerr frequency combs. We show that bifurcating solitary waves are spectrally stable when the phase angle satisfies $$\theta \in (0,\pi )$$ θ ∈ ( 0 , π ) , while unstable waves are found for angles $$\theta \in (\pi ,2\pi )$$ θ ∈ ( π , 2 π ) . Furthermore, we establish asymptotic orbital stability of spectrally stable solitary waves against localized perturbations. Our analysis exploits the Lyapunov–Schmidt reduction method, the instability index count developed for linear Hamiltonian systems, and resolvent estimates.
Twitter Meta Tags
6- twitter:site@SpringerLink
- twitter:cardsummary_large_image
- twitter:image:altContent cover image
- twitter:titleStability of solitary wave solutions in the Lugiato–Lefever equation
- twitter:descriptionZeitschrift für angewandte Mathematik und Physik - We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on $$\mathbb {R}$$ . Our...
Item Prop Meta Tags
3- position1
- position2
- position3
Link Tags
9- apple-touch-icon/oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
- canonicalhttps://link.springer.com/article/10.1007/s00033-024-02273-0
- icon/oscar-static/img/favicons/darwin/android-chrome-192x192.png
- icon/oscar-static/img/favicons/darwin/favicon-32x32.png
- icon/oscar-static/img/favicons/darwin/favicon-16x16.png
Emails
1Links
228- http://arxiv.org/abs/2307.01176
- http://creativecommons.org/licenses/by/4.0
- http://scholar.google.com/scholar_lookup?&title=A%20bifurcation%20analysis%20for%20the%20Lugiato%E2%80%93Lefever%20equation&journal=Eur.%20Phys.%20J.%20D&doi=10.1140%2Fepjd%2Fe2017-80057-2&volume=71&publication_year=2017&author=Godey%2CC
- http://scholar.google.com/scholar_lookup?&title=A%20priori%20bounds%20and%20global%20bifurcation%20results%20for%20frequency%20combs%20modeled%20by%20the%20Lugiato%E2%80%93Lefever%20equation&journal=SIAM%20J.%20Appl.%20Math.&doi=10.1137%2F16M1066221&volume=77&pages=315-345&publication_year=2017&author=Mandel%2CR&author=Reichel%2CW
- http://scholar.google.com/scholar_lookup?&title=Analytic%20Theory%20of%20Global%20Bifurcation.%20Princeton%20Series%20in%20Applied%20Mathematics&doi=10.1515%2F9781400884339&publication_year=2003&author=Buffoni%2CB&author=Toland%2CJ