doi.org/10.1007/s00521-020-05139-4

Preview meta tags from the doi.org website.

Linked Hostnames

29

Thumbnail

Search Engine Appearance

Google

https://doi.org/10.1007/s00521-020-05139-4

Machine learning for total cloud cover prediction - Neural Computing and Applications

Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most



Bing

Machine learning for total cloud cover prediction - Neural Computing and Applications

https://doi.org/10.1007/s00521-020-05139-4

Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most



DuckDuckGo

https://doi.org/10.1007/s00521-020-05139-4

Machine learning for total cloud cover prediction - Neural Computing and Applications

Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most

  • General Meta Tags

    138
    • title
      Machine learning for total cloud cover prediction | Neural Computing and Applications
    • charset
      UTF-8
    • X-UA-Compatible
      IE=edge
    • applicable-device
      pc,mobile
    • viewport
      width=device-width, initial-scale=1
  • Open Graph Meta Tags

    6
    • og:url
      https://link.springer.com/article/10.1007/s00521-020-05139-4
    • og:type
      article
    • og:site_name
      SpringerLink
    • og:title
      Machine learning for total cloud cover prediction - Neural Computing and Applications
    • og:description
      Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most meteorological centres issue ensemble forecasts of TCC; however, these forecasts are often uncalibrated and exhibit worse forecast skill than ensemble forecasts of other weather variables. Hence, some form of post-processing is strongly required to improve predictive performance. As TCC observations are usually reported on a discrete scale taking just nine different values called oktas, statistical calibration of TCC ensemble forecasts can be considered a classification problem with outputs given by the probabilities of the oktas. This is a classical area where machine learning methods are applied. We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods. Based on the European Centre for Medium-Range Weather Forecasts global TCC ensemble forecasts for 2002–2014, we compare these approaches with the proportional odds logistic regression (POLR) and multiclass logistic regression (MLR) models, as well as the raw TCC ensemble forecasts. We further assess whether improvements in forecast skill can be obtained by incorporating ensemble forecasts of precipitation as additional predictor. Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill. RF models provide the smallest increase in predictive performance, while MLP, POLR and GBM approaches perform best. The use of precipitation forecast data leads to further improvements in forecast skill, and except for very short lead times the extended MLP model shows the best overall performance.
  • Twitter Meta Tags

    6
    • twitter:site
      @SpringerLink
    • twitter:card
      summary_large_image
    • twitter:image:alt
      Content cover image
    • twitter:title
      Machine learning for total cloud cover prediction
    • twitter:description
      Neural Computing and Applications - Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most...
  • Item Prop Meta Tags

    3
    • position
      1
    • position
      2
    • position
      3
  • Link Tags

    9
    • apple-touch-icon
      /oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
    • canonical
      https://link.springer.com/article/10.1007/s00521-020-05139-4
    • icon
      /oscar-static/img/favicons/darwin/android-chrome-192x192.png
    • icon
      /oscar-static/img/favicons/darwin/favicon-32x32.png
    • icon
      /oscar-static/img/favicons/darwin/favicon-16x16.png

Emails

1

Links

237