doi.org/10.1175/2011JCLI3919.1

Preview meta tags from the doi.org website.

Linked Hostnames

18

Thumbnail

Search Engine Appearance

Google

https://doi.org/10.1175/2011JCLI3919.1

Climate Variability and Radiocarbon in the CM2Mc Earth System Model

Abstract The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mechanisms that redistribute 14C within the earth system on interannual to centennial time scales. The model, the Geophysical Fluid Dynamics Laboratory Climate Model version 2 (GFDL CM2) with Modular Ocean Model version 4p1(MOM4p1) at coarse-resolution (CM2Mc), is a lower-resolution version of the Geophysical Fluid Dynamics Laboratory’s CM2M model, uses no flux adjustments, and is run here with a simple prognostic ocean biogeochemistry model including 14C. The atmospheric 14C and radiative boundary conditions are held constant so that the oceanic distribution of 14C is only a function of internal climate variability. The simulation displays previously described relationships between tropical sea surface 14C and the model equivalents of the El Niño–Southern Oscillation and Indonesian Throughflow. Sea surface 14C variability also arises from fluctuations in the circulations of the subarctic Pacific and Southern Ocean, including North Pacific decadal variability and episodic ventilation events in the Weddell Sea that are reminiscent of the Weddell Polynya of 1974–76. Interannual variability in the air–sea balance of 14C is dominated by exchange within the belt of intense “Southern Westerly” winds, rather than at the convective locations where the surface 14C is most variable. Despite significant interannual variability, the simulated impact on air–sea exchange is an order of magnitude smaller than the recorded atmospheric 14C variability of the past millennium. This result partly reflects the importance of variability in the production rate of 14C in determining atmospheric 14C but may also reflect an underestimate of natural climate variability, particularly in the Southern Westerly winds.



Bing

Climate Variability and Radiocarbon in the CM2Mc Earth System Model

https://doi.org/10.1175/2011JCLI3919.1

Abstract The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mechanisms that redistribute 14C within the earth system on interannual to centennial time scales. The model, the Geophysical Fluid Dynamics Laboratory Climate Model version 2 (GFDL CM2) with Modular Ocean Model version 4p1(MOM4p1) at coarse-resolution (CM2Mc), is a lower-resolution version of the Geophysical Fluid Dynamics Laboratory’s CM2M model, uses no flux adjustments, and is run here with a simple prognostic ocean biogeochemistry model including 14C. The atmospheric 14C and radiative boundary conditions are held constant so that the oceanic distribution of 14C is only a function of internal climate variability. The simulation displays previously described relationships between tropical sea surface 14C and the model equivalents of the El Niño–Southern Oscillation and Indonesian Throughflow. Sea surface 14C variability also arises from fluctuations in the circulations of the subarctic Pacific and Southern Ocean, including North Pacific decadal variability and episodic ventilation events in the Weddell Sea that are reminiscent of the Weddell Polynya of 1974–76. Interannual variability in the air–sea balance of 14C is dominated by exchange within the belt of intense “Southern Westerly” winds, rather than at the convective locations where the surface 14C is most variable. Despite significant interannual variability, the simulated impact on air–sea exchange is an order of magnitude smaller than the recorded atmospheric 14C variability of the past millennium. This result partly reflects the importance of variability in the production rate of 14C in determining atmospheric 14C but may also reflect an underestimate of natural climate variability, particularly in the Southern Westerly winds.



DuckDuckGo

https://doi.org/10.1175/2011JCLI3919.1

Climate Variability and Radiocarbon in the CM2Mc Earth System Model

Abstract The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mechanisms that redistribute 14C within the earth system on interannual to centennial time scales. The model, the Geophysical Fluid Dynamics Laboratory Climate Model version 2 (GFDL CM2) with Modular Ocean Model version 4p1(MOM4p1) at coarse-resolution (CM2Mc), is a lower-resolution version of the Geophysical Fluid Dynamics Laboratory’s CM2M model, uses no flux adjustments, and is run here with a simple prognostic ocean biogeochemistry model including 14C. The atmospheric 14C and radiative boundary conditions are held constant so that the oceanic distribution of 14C is only a function of internal climate variability. The simulation displays previously described relationships between tropical sea surface 14C and the model equivalents of the El Niño–Southern Oscillation and Indonesian Throughflow. Sea surface 14C variability also arises from fluctuations in the circulations of the subarctic Pacific and Southern Ocean, including North Pacific decadal variability and episodic ventilation events in the Weddell Sea that are reminiscent of the Weddell Polynya of 1974–76. Interannual variability in the air–sea balance of 14C is dominated by exchange within the belt of intense “Southern Westerly” winds, rather than at the convective locations where the surface 14C is most variable. Despite significant interannual variability, the simulated impact on air–sea exchange is an order of magnitude smaller than the recorded atmospheric 14C variability of the past millennium. This result partly reflects the importance of variability in the production rate of 14C in determining atmospheric 14C but may also reflect an underestimate of natural climate variability, particularly in the Southern Westerly winds.

  • General Meta Tags

    53
    • title
      Climate Variability and Radiocarbon in the CM2Mc Earth System Model in: Journal of Climate Volume 24 Issue 16 (2011)
    • Content-Type
      text/html; charset=utf-8
    • description
      Abstract The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mechanisms that redistribute 14C within the earth system on interannual to centennial time scales. The model, the Geophysical Fluid Dynamics Laboratory Climate Model version 2 (GFDL CM2) with Modular Ocean Model version 4p1(MOM4p1) at coarse-resolution (CM2Mc), is a lower-resolution version of the Geophysical Fluid Dynamics Laboratory’s CM2M model, uses no flux adjustments, and is run here with a simple prognostic ocean biogeochemistry model including 14C. The atmospheric 14C and radiative boundary conditions are held constant so that the oceanic distribution of 14C is only a function of internal climate variability. The simulation displays previously described relationships between tropical sea surface 14C and the model equivalents of the El Niño–Southern Oscillation and Indonesian Throughflow. Sea surface 14C variability also arises from fluctuations in the circulations of the subarctic Pacific and Southern Ocean, including North Pacific decadal variability and episodic ventilation events in the Weddell Sea that are reminiscent of the Weddell Polynya of 1974–76. Interannual variability in the air–sea balance of 14C is dominated by exchange within the belt of intense “Southern Westerly” winds, rather than at the convective locations where the surface 14C is most variable. Despite significant interannual variability, the simulated impact on air–sea exchange is an order of magnitude smaller than the recorded atmospheric 14C variability of the past millennium. This result partly reflects the importance of variability in the production rate of 14C in determining atmospheric 14C but may also reflect an underestimate of natural climate variability, particularly in the Southern Westerly winds.
    • article:author
      Eric D. Galbraith
    • article:author
      Eun Young Kwon
  • Open Graph Meta Tags

    7
    • og:url
      https://journals.ametsoc.org/view/journals/clim/24/16/2011jcli3919.1.xml
    • og:site_name
      AMETSOC
    • og:type
      article
    • og:title
      Climate Variability and Radiocarbon in the CM2Mc Earth System Model
    • og:description
      Abstract The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mechanisms that redistribute 14C within the earth system on interannual to centennial time scales. The model, the Geophysical Fluid Dynamics Laboratory Climate Model version 2 (GFDL CM2) with Modular Ocean Model version 4p1(MOM4p1) at coarse-resolution (CM2Mc), is a lower-resolution version of the Geophysical Fluid Dynamics Laboratory’s CM2M model, uses no flux adjustments, and is run here with a simple prognostic ocean biogeochemistry model including 14C. The atmospheric 14C and radiative boundary conditions are held constant so that the oceanic distribution of 14C is only a function of internal climate variability. The simulation displays previously described relationships between tropical sea surface 14C and the model equivalents of the El Niño–Southern Oscillation and Indonesian Throughflow. Sea surface 14C variability also arises from fluctuations in the circulations of the subarctic Pacific and Southern Ocean, including North Pacific decadal variability and episodic ventilation events in the Weddell Sea that are reminiscent of the Weddell Polynya of 1974–76. Interannual variability in the air–sea balance of 14C is dominated by exchange within the belt of intense “Southern Westerly” winds, rather than at the convective locations where the surface 14C is most variable. Despite significant interannual variability, the simulated impact on air–sea exchange is an order of magnitude smaller than the recorded atmospheric 14C variability of the past millennium. This result partly reflects the importance of variability in the production rate of 14C in determining atmospheric 14C but may also reflect an underestimate of natural climate variability, particularly in the Southern Westerly winds.
  • Twitter Meta Tags

    3
    • twitter:card
      summary_large_image
    • twitter:title
      Climate Variability and Radiocarbon in the CM2Mc Earth System Model
    • twitter:description
      Abstract The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mechanisms that redistribute 14C within the earth system on interannual to centennial time scales. The model, the Geophysical Fluid Dynamics Laboratory Climate Model version 2 (GFDL CM2) with Modular Ocean Model version 4p1(MOM4p1) at coarse-resolution (CM2Mc), is a lower-resolution version of the Geophysical Fluid Dynamics Laboratory’s CM2M model, uses no flux adjustments, and is run here with a simple prognostic ocean biogeochemistry model including 14C. The atmospheric 14C and radiative boundary conditions are held constant so that the oceanic distribution of 14C is only a function of internal climate variability. The simulation displays previously described relationships between tropical sea surface 14C and the model equivalents of the El Niño–Southern Oscillation and Indonesian Throughflow. Sea surface 14C variability also arises from fluctuations in the circulations of the subarctic Pacific and Southern Ocean, including North Pacific decadal variability and episodic ventilation events in the Weddell Sea that are reminiscent of the Weddell Polynya of 1974–76. Interannual variability in the air–sea balance of 14C is dominated by exchange within the belt of intense “Southern Westerly” winds, rather than at the convective locations where the surface 14C is most variable. Despite significant interannual variability, the simulated impact on air–sea exchange is an order of magnitude smaller than the recorded atmospheric 14C variability of the past millennium. This result partly reflects the importance of variability in the production rate of 14C in determining atmospheric 14C but may also reflect an underestimate of natural climate variability, particularly in the Southern Westerly winds.
  • Link Tags

    20
    • alternate
      /newsrss
    • canonical
      https://journals.ametsoc.org/view/journals/clim/24/16/2011jcli3919.1.xml
    • dns-prefetch
      //ajax.googleapis.com
    • dns-prefetch
      //translate.google.com
    • preconnect
      //ajax.googleapis.com

Emails

3
  • [email protected]
  • [email protected]
  • ?subject=Link%20to%20Climate%20Variability%20and%20Radiocarbon%20in%20the%20CM2Mc%20Earth%20System%20Model&body=https%3A%2F%2Fjournals.ametsoc.org%2Fview%2Fjournals%2Fclim%2F24%2F16%2F2011jcli3919.1.xml

Links

403