doi.org/10.1371/journal.pcbi.1007207

Preview meta tags from the doi.org website.

Linked Hostnames

18

Thumbnail

Search Engine Appearance

Google

https://doi.org/10.1371/journal.pcbi.1007207

Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces

Author summary Antibodies are highly important in research, biotechnology, and medical applications. Despite their great utility, however, many antibodies exhibit suboptimal stability and affinity, raising production costs and limiting their practical usefulness. To tackle this general limitation, we used deep mutational scanning to characterize the effects of mutations in an antibody variable fragment on its antigen-binding affinity. Surprisingly, many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface. We, therefore, developed an automated method, called AbLIFT (http://AbLIFT.weizmann.ac.il) to optimize this interface through design. Two unrelated antibodies were tested and showed improvements in expression levels, stability, and antigen-binding affinity. Since AbLIFT requires testing of only a few dozen specific designs, it may dramatically accelerate the development of promising antibodies into useful research and clinical tools.



Bing

Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces

https://doi.org/10.1371/journal.pcbi.1007207

Author summary Antibodies are highly important in research, biotechnology, and medical applications. Despite their great utility, however, many antibodies exhibit suboptimal stability and affinity, raising production costs and limiting their practical usefulness. To tackle this general limitation, we used deep mutational scanning to characterize the effects of mutations in an antibody variable fragment on its antigen-binding affinity. Surprisingly, many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface. We, therefore, developed an automated method, called AbLIFT (http://AbLIFT.weizmann.ac.il) to optimize this interface through design. Two unrelated antibodies were tested and showed improvements in expression levels, stability, and antigen-binding affinity. Since AbLIFT requires testing of only a few dozen specific designs, it may dramatically accelerate the development of promising antibodies into useful research and clinical tools.



DuckDuckGo

https://doi.org/10.1371/journal.pcbi.1007207

Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces

Author summary Antibodies are highly important in research, biotechnology, and medical applications. Despite their great utility, however, many antibodies exhibit suboptimal stability and affinity, raising production costs and limiting their practical usefulness. To tackle this general limitation, we used deep mutational scanning to characterize the effects of mutations in an antibody variable fragment on its antigen-binding affinity. Surprisingly, many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface. We, therefore, developed an automated method, called AbLIFT (http://AbLIFT.weizmann.ac.il) to optimize this interface through design. Two unrelated antibodies were tested and showed improvements in expression levels, stability, and antigen-binding affinity. Since AbLIFT requires testing of only a few dozen specific designs, it may dramatically accelerate the development of promising antibodies into useful research and clinical tools.

  • General Meta Tags

    121
    • title
      Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces | PLOS Computational Biology
    • Content-Type
      text/html; charset=utf-8
    • description
      Author summary Antibodies are highly important in research, biotechnology, and medical applications. Despite their great utility, however, many antibodies exhibit suboptimal stability and affinity, raising production costs and limiting their practical usefulness. To tackle this general limitation, we used deep mutational scanning to characterize the effects of mutations in an antibody variable fragment on its antigen-binding affinity. Surprisingly, many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface. We, therefore, developed an automated method, called AbLIFT (http://AbLIFT.weizmann.ac.il) to optimize this interface through design. Two unrelated antibodies were tested and showed improvements in expression levels, stability, and antigen-binding affinity. Since AbLIFT requires testing of only a few dozen specific designs, it may dramatically accelerate the development of promising antibodies into useful research and clinical tools.
    • citation_abstract
      Antibodies developed for research and clinical applications may exhibit suboptimal stability, expressibility, or affinity. Existing optimization strategies focus on surface mutations, whereas natural affinity maturation also introduces mutations in the antibody core, simultaneously improving stability and affinity. To systematically map the mutational tolerance of an antibody variable fragment (Fv), we performed yeast display and applied deep mutational scanning to an anti-lysozyme antibody and found that many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface, within the antibody core. Rosetta design combined enhancing mutations, yielding a variant with tenfold higher affinity and substantially improved stability. To make this approach broadly accessible, we developed AbLIFT, an automated web server that designs multipoint core mutations to improve contacts between specific Fv light and heavy chains (http://AbLIFT.weizmann.ac.il). We applied AbLIFT to two unrelated antibodies targeting the human antigens VEGF and QSOX1. Strikingly, the designs improved stability, affinity, and expression yields. The results provide proof-of-principle for bypassing laborious cycles of antibody engineering through automated computational affinity and stability design.
    • keywords
      Point mutation,Mutation detection,Antibodies,Yeast,Lysozyme,Deletion mutation,Transfection,Antibody production
  • Open Graph Meta Tags

    5
    • og:type
      article
    • og:url
      https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007207
    • og:title
      Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces
    • og:description
      Author summary Antibodies are highly important in research, biotechnology, and medical applications. Despite their great utility, however, many antibodies exhibit suboptimal stability and affinity, raising production costs and limiting their practical usefulness. To tackle this general limitation, we used deep mutational scanning to characterize the effects of mutations in an antibody variable fragment on its antigen-binding affinity. Surprisingly, many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface. We, therefore, developed an automated method, called AbLIFT (http://AbLIFT.weizmann.ac.il) to optimize this interface through design. Two unrelated antibodies were tested and showed improvements in expression levels, stability, and antigen-binding affinity. Since AbLIFT requires testing of only a few dozen specific designs, it may dramatically accelerate the development of promising antibodies into useful research and clinical tools.
    • og:image
      https://journals.plos.org/ploscompbiol/article/figure/image?id=10.1371/journal.pcbi.1007207.g005&size=inline
  • Twitter Meta Tags

    3
    • twitter:card
      summary
    • twitter:site
      ploscompbiol
    • twitter:title
      Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces
  • Item Prop Meta Tags

    1
    • name
      Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces
  • Link Tags

    5
    • canonical
      https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007207
    • shortcut icon
      /resource/img/favicon.ico
    • stylesheet
      /resource/css/screen.css?c74e939b589ca13037d4e7a8e8d4f467
    • stylesheet
      https://fonts.googleapis.com/css?family=Open+Sans:400,400i,600
    • stylesheet
      /resource/css/print.css

Emails

3
  • [email protected]
  • ?subject=Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces&body=I%20thought%20you%20would%20find%20this%20article%20interesting.%20From%20PLOS Computational Biology:%20https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcbi.1007207
  • [email protected]

Links

332