dx.doi.org/10.1007/978-3-662-49896-5_12
Preview meta tags from the dx.doi.org website.
Linked Hostnames
24- 34 links toscholar.google.com
- 33 links tolink.springer.com
- 17 links todx.doi.org
- 10 links towww.ams.org
- 10 links towww.springernature.com
- 9 links towww.emis.de
- 5 links todoi.org
- 5 links toscholar.google.co.uk
Thumbnail

Search Engine Appearance
Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting
We provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...
Bing
Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting
We provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...
DuckDuckGo
Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting
We provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...
General Meta Tags
45- titleEfficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting | SpringerLink
- charsetUTF-8
- X-UA-CompatibleIE=edge
- viewportwidth=device-width, initial-scale=1
- applicable-devicepc,mobile
Open Graph Meta Tags
6- og:urlhttps://link.springer.com/chapter/10.1007/978-3-662-49896-5_12
- og:typePaper
- og:site_nameSpringerLink
- og:titleEfficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting
- og:descriptionWe provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...
Twitter Meta Tags
6- twitter:siteSpringerLink
- twitter:cardsummary
- twitter:image:altContent cover image
- twitter:titleEfficient Zero-Knowledge Arguments for Arithmetic Circuits in the Disc
- twitter:descriptionWe provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...
Item Prop Meta Tags
3- position1
- position2
- position3
Link Tags
9- apple-touch-icon/oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
- canonicalhttps://link.springer.com/chapter/10.1007/978-3-662-49896-5_12
- icon/oscar-static/img/favicons/darwin/android-chrome-192x192.png
- icon/oscar-static/img/favicons/darwin/favicon-32x32.png
- icon/oscar-static/img/favicons/darwin/favicon-16x16.png
Emails
1Links
147- http://dasan.sejong.ac.kr/%20chlim/pub/multi_exp.ps
- http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Andrea%20Cerulli%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Christophe%20Petit%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Jens%20Groth%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Jonathan%20Bootle%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en