dx.doi.org/10.1007/978-3-662-49896-5_12

Preview meta tags from the dx.doi.org website.

Linked Hostnames

24

Thumbnail

Search Engine Appearance

Google

https://dx.doi.org/10.1007/978-3-662-49896-5_12

Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting

We provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...



Bing

Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting

https://dx.doi.org/10.1007/978-3-662-49896-5_12

We provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...



DuckDuckGo

https://dx.doi.org/10.1007/978-3-662-49896-5_12

Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting

We provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...

  • General Meta Tags

    45
    • title
      Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting | SpringerLink
    • charset
      UTF-8
    • X-UA-Compatible
      IE=edge
    • viewport
      width=device-width, initial-scale=1
    • applicable-device
      pc,mobile
  • Open Graph Meta Tags

    6
    • og:url
      https://link.springer.com/chapter/10.1007/978-3-662-49896-5_12
    • og:type
      Paper
    • og:site_name
      SpringerLink
    • og:title
      Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting
    • og:description
      We provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...
  • Twitter Meta Tags

    6
    • twitter:site
      SpringerLink
    • twitter:card
      summary
    • twitter:image:alt
      Content cover image
    • twitter:title
      Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Disc
    • twitter:description
      We provide a zero-knowledge argument for arithmetic circuit satisfiability with a communication complexity that grows logarithmically in the size of the circuit. The round complexity is also logarithmic and for an arithmetic circuit with fan-in 2 gates the...
  • Item Prop Meta Tags

    3
    • position
      1
    • position
      2
    • position
      3
  • Link Tags

    9
    • apple-touch-icon
      /oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
    • canonical
      https://link.springer.com/chapter/10.1007/978-3-662-49896-5_12
    • icon
      /oscar-static/img/favicons/darwin/android-chrome-192x192.png
    • icon
      /oscar-static/img/favicons/darwin/favicon-32x32.png
    • icon
      /oscar-static/img/favicons/darwin/favicon-16x16.png

Emails

1

Links

147