dx.doi.org/10.1038/s41586-024-08074-9

Preview meta tags from the dx.doi.org website.

Linked Hostnames

32

Thumbnail

Search Engine Appearance

Google

https://dx.doi.org/10.1038/s41586-024-08074-9

Preferential occurrence of fast radio bursts in massive star-forming galaxies - Nature

Fast radio bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favour highly magnetized neutron stars, or magnetars, as the sources1, as evidenced by FRB-like bursts from a galactic magnetar2,3, and the star-forming nature of FRB host galaxies4,5. However, the processes that produce FRB sources remain unknown6. Although galactic magnetars are often linked to core-collapse supernovae (CCSNe)7, it is uncertain what determines which supernovae result in magnetars. The galactic environments of FRB sources can be used to investigate their progenitors. Here, we present the stellar population properties of 30 FRB host galaxies discovered by the Deep Synoptic Array (DSA-110). Our analysis shows a marked deficit of low-mass FRB hosts compared with the occurrence of star formation in the Universe, implying that FRBs are a biased tracer of star formation, preferentially selecting massive star-forming galaxies. This bias may be driven by galaxy metallicity, which is positively correlated with stellar mass8. Metal-rich environments may favour the formation of magnetar progenitors through stellar mergers9,10, as higher-metallicity stars are less compact and more likely to fill their Roche lobes, leading to unstable mass transfer. Although massive stars do not have convective interiors to generate strong magnetic fields by dynamo11, merger remnants are thought to have the requisite internal magnetic-field strengths to result in magnetars11,12. The preferential occurrence of FRBs in massive star-forming galaxies suggests that a core-collapse supernova of merger remnants preferentially forms magnetars. Analysis of the stellar population properties of 30 host galaxies of fast radio bursts (FRBs) suggests an abundance of FRBs in massive star-forming galaxies, and implies that the formation of FRB sources—magnetars—is linked to core-collapse supernovae of stellar merger remnants.



Bing

Preferential occurrence of fast radio bursts in massive star-forming galaxies - Nature

https://dx.doi.org/10.1038/s41586-024-08074-9

Fast radio bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favour highly magnetized neutron stars, or magnetars, as the sources1, as evidenced by FRB-like bursts from a galactic magnetar2,3, and the star-forming nature of FRB host galaxies4,5. However, the processes that produce FRB sources remain unknown6. Although galactic magnetars are often linked to core-collapse supernovae (CCSNe)7, it is uncertain what determines which supernovae result in magnetars. The galactic environments of FRB sources can be used to investigate their progenitors. Here, we present the stellar population properties of 30 FRB host galaxies discovered by the Deep Synoptic Array (DSA-110). Our analysis shows a marked deficit of low-mass FRB hosts compared with the occurrence of star formation in the Universe, implying that FRBs are a biased tracer of star formation, preferentially selecting massive star-forming galaxies. This bias may be driven by galaxy metallicity, which is positively correlated with stellar mass8. Metal-rich environments may favour the formation of magnetar progenitors through stellar mergers9,10, as higher-metallicity stars are less compact and more likely to fill their Roche lobes, leading to unstable mass transfer. Although massive stars do not have convective interiors to generate strong magnetic fields by dynamo11, merger remnants are thought to have the requisite internal magnetic-field strengths to result in magnetars11,12. The preferential occurrence of FRBs in massive star-forming galaxies suggests that a core-collapse supernova of merger remnants preferentially forms magnetars. Analysis of the stellar population properties of 30 host galaxies of fast radio bursts (FRBs) suggests an abundance of FRBs in massive star-forming galaxies, and implies that the formation of FRB sources—magnetars—is linked to core-collapse supernovae of stellar merger remnants.



DuckDuckGo

https://dx.doi.org/10.1038/s41586-024-08074-9

Preferential occurrence of fast radio bursts in massive star-forming galaxies - Nature

Fast radio bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favour highly magnetized neutron stars, or magnetars, as the sources1, as evidenced by FRB-like bursts from a galactic magnetar2,3, and the star-forming nature of FRB host galaxies4,5. However, the processes that produce FRB sources remain unknown6. Although galactic magnetars are often linked to core-collapse supernovae (CCSNe)7, it is uncertain what determines which supernovae result in magnetars. The galactic environments of FRB sources can be used to investigate their progenitors. Here, we present the stellar population properties of 30 FRB host galaxies discovered by the Deep Synoptic Array (DSA-110). Our analysis shows a marked deficit of low-mass FRB hosts compared with the occurrence of star formation in the Universe, implying that FRBs are a biased tracer of star formation, preferentially selecting massive star-forming galaxies. This bias may be driven by galaxy metallicity, which is positively correlated with stellar mass8. Metal-rich environments may favour the formation of magnetar progenitors through stellar mergers9,10, as higher-metallicity stars are less compact and more likely to fill their Roche lobes, leading to unstable mass transfer. Although massive stars do not have convective interiors to generate strong magnetic fields by dynamo11, merger remnants are thought to have the requisite internal magnetic-field strengths to result in magnetars11,12. The preferential occurrence of FRBs in massive star-forming galaxies suggests that a core-collapse supernova of merger remnants preferentially forms magnetars. Analysis of the stellar population properties of 30 host galaxies of fast radio bursts (FRBs) suggests an abundance of FRBs in massive star-forming galaxies, and implies that the formation of FRB sources—magnetars—is linked to core-collapse supernovae of stellar merger remnants.

  • General Meta Tags

    293
    • title
      Preferential occurrence of fast radio bursts in massive star-forming galaxies | Nature
    • title
      Close banner
    • title
      Close banner
    • X-UA-Compatible
      IE=edge
    • applicable-device
      pc,mobile
  • Open Graph Meta Tags

    6
    • og:url
      https://www.nature.com/articles/s41586-024-08074-9
    • og:type
      article
    • og:site_name
      Nature
    • og:title
      Preferential occurrence of fast radio bursts in massive star-forming galaxies - Nature
    • og:description
      Analysis of the stellar population properties of 30 host galaxies of fast radio bursts (FRBs) suggests an abundance of FRBs in massive star-forming galaxies, and implies that the formation of FRB sources—magnetars—is linked to core-collapse supernovae of stellar merger remnants.
  • Twitter Meta Tags

    6
    • twitter:site
      @nature
    • twitter:card
      summary_large_image
    • twitter:image:alt
      Content cover image
    • twitter:title
      Preferential occurrence of fast radio bursts in massive star-forming galaxies
    • twitter:description
      Nature - Analysis of the stellar population properties of 30 host galaxies of fast radio bursts (FRBs) suggests an abundance of FRBs in massive star-forming galaxies, and implies that the formation...
  • Item Prop Meta Tags

    4
    • position
      1
    • position
      2
    • position
      3
    • publisher
      Springer Nature
  • Link Tags

    15
    • alternate
      https://www.nature.com/nature.rss
    • apple-touch-icon
      /static/images/favicons/nature/apple-touch-icon-f39cb19454.png
    • canonical
      https://www.nature.com/articles/s41586-024-08074-9
    • icon
      /static/images/favicons/nature/favicon-48x48-b52890008c.png
    • icon
      /static/images/favicons/nature/favicon-32x32-3fe59ece92.png

Emails

1

Links

651