
eprint.iacr.org/2011/566
Preview meta tags from the eprint.iacr.org website.
Linked Hostnames
5- 27 links toeprint.iacr.org
- 1 link tocreativecommons.org
- 1 link toia.cr
- 1 link toiacr.org
- 1 link towww.iacr.org
Thumbnail

Search Engine Appearance
Fully Homomorphic Encryption with Polylog Overhead
We show that homomorphic evaluation of (wide enough) arithmetic circuits can be accomplished with only polylogarithmic overhead. Namely, we present a construction of fully homomorphic encryption (FHE) schemes that for security parameter $\secparam$ can evaluate any width-$\Omega(\secparam)$ circuit with $t$ gates in time $t\cdot polylog(\secparam)$. To get low overhead, we use the recent batch homomorphic evaluation techniques of Smart-Vercauteren and Brakerski-Gentry-Vaikuntanathan, who showed that homomorphic operations can be applied to "packed" ciphertexts that encrypt vectors of plaintext elements. In this work, we introduce permuting/routing techniques to move plaintext elements across these vectors efficiently. Hence, we are able to implement general arithmetic circuit in a batched fashion without ever needing to "unpack" the plaintext vectors. We also introduce some other optimizations that can speed up homomorphic evaluation in certain cases. For example, we show how to use the Frobenius map to raise plaintext elements to powers of~$p$ at the "cost" of a linear operation.
Bing
Fully Homomorphic Encryption with Polylog Overhead
We show that homomorphic evaluation of (wide enough) arithmetic circuits can be accomplished with only polylogarithmic overhead. Namely, we present a construction of fully homomorphic encryption (FHE) schemes that for security parameter $\secparam$ can evaluate any width-$\Omega(\secparam)$ circuit with $t$ gates in time $t\cdot polylog(\secparam)$. To get low overhead, we use the recent batch homomorphic evaluation techniques of Smart-Vercauteren and Brakerski-Gentry-Vaikuntanathan, who showed that homomorphic operations can be applied to "packed" ciphertexts that encrypt vectors of plaintext elements. In this work, we introduce permuting/routing techniques to move plaintext elements across these vectors efficiently. Hence, we are able to implement general arithmetic circuit in a batched fashion without ever needing to "unpack" the plaintext vectors. We also introduce some other optimizations that can speed up homomorphic evaluation in certain cases. For example, we show how to use the Frobenius map to raise plaintext elements to powers of~$p$ at the "cost" of a linear operation.
DuckDuckGo

Fully Homomorphic Encryption with Polylog Overhead
We show that homomorphic evaluation of (wide enough) arithmetic circuits can be accomplished with only polylogarithmic overhead. Namely, we present a construction of fully homomorphic encryption (FHE) schemes that for security parameter $\secparam$ can evaluate any width-$\Omega(\secparam)$ circuit with $t$ gates in time $t\cdot polylog(\secparam)$. To get low overhead, we use the recent batch homomorphic evaluation techniques of Smart-Vercauteren and Brakerski-Gentry-Vaikuntanathan, who showed that homomorphic operations can be applied to "packed" ciphertexts that encrypt vectors of plaintext elements. In this work, we introduce permuting/routing techniques to move plaintext elements across these vectors efficiently. Hence, we are able to implement general arithmetic circuit in a batched fashion without ever needing to "unpack" the plaintext vectors. We also introduce some other optimizations that can speed up homomorphic evaluation in certain cases. For example, we show how to use the Frobenius map to raise plaintext elements to powers of~$p$ at the "cost" of a linear operation.
General Meta Tags
19- titleFully Homomorphic Encryption with Polylog Overhead
- charsetutf-8
- viewportwidth=device-width, initial-scale=1, shrink-to-fit=no
- citation_titleFully Homomorphic Encryption with Polylog Overhead
- citation_authorCraig Gentry
Open Graph Meta Tags
7- og:imagehttps://eprint.iacr.org/img/iacrlogo.png
- og:image:altIACR logo
- og:urlhttps://eprint.iacr.org/2011/566
- og:site_nameIACR Cryptology ePrint Archive
- og:typearticle
Link Tags
4- apple-touch-icon/img/apple-touch-icon-180x180.png
- shortcut icon/favicon.ico
- stylesheet/css/dist/css/bootstrap.min.css
- stylesheet/css/eprint.css?v=10
Links
31- https://creativecommons.org/licenses/by/4.0
- https://eprint.iacr.org
- https://eprint.iacr.org/2011/566.pdf
- https://eprint.iacr.org/about.html
- https://eprint.iacr.org/archive/versions/2011/566