eprint.iacr.org/2011/680

Preview meta tags from the eprint.iacr.org website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://eprint.iacr.org/2011/680

Better Bootstrapping in Fully Homomorphic Encryption

Gentry's bootstrapping technique is currently the only known method of obtaining a "pure" fully homomorphic encryption (FHE) schemes, and it may offers performance advantages even in cases that do not require pure FHE (such as when using the new noise-control technique of Brakerski-Gentry-Vaikuntanathan). The main bottleneck in bootstrapping is the need to evaluate homomorphically the reduction of one integer modulo another. This is typically done by emulating a binary modular reduction circuit, using bit operations on binary representation of integers. We present a simpler approach that bypasses the homomorphic modular-reduction bottleneck to some extent, by working with a modulus very close to a power of two. Our method is easier to describe and implement than the generic binary circuit approach, and is likely to be faster in practice. In some cases it also allows us to store the encryption of the secret key as a single ciphertext, thus reducing the size of the public key. We also show how to combine our new method with the SIMD homomorphic computation techniques of Smart-Vercauteren and Gentry-Halevi-Smart, to get a bootstrapping method that works in time quasi-linear in the security parameter. This last part requires extending the techniques from prior work to handle arithmetic not only over fields, but also over some rings. (Specifically, our method uses arithmetic modulo a power of two, rather than over characteristic-two fields.)



Bing

Better Bootstrapping in Fully Homomorphic Encryption

https://eprint.iacr.org/2011/680

Gentry's bootstrapping technique is currently the only known method of obtaining a "pure" fully homomorphic encryption (FHE) schemes, and it may offers performance advantages even in cases that do not require pure FHE (such as when using the new noise-control technique of Brakerski-Gentry-Vaikuntanathan). The main bottleneck in bootstrapping is the need to evaluate homomorphically the reduction of one integer modulo another. This is typically done by emulating a binary modular reduction circuit, using bit operations on binary representation of integers. We present a simpler approach that bypasses the homomorphic modular-reduction bottleneck to some extent, by working with a modulus very close to a power of two. Our method is easier to describe and implement than the generic binary circuit approach, and is likely to be faster in practice. In some cases it also allows us to store the encryption of the secret key as a single ciphertext, thus reducing the size of the public key. We also show how to combine our new method with the SIMD homomorphic computation techniques of Smart-Vercauteren and Gentry-Halevi-Smart, to get a bootstrapping method that works in time quasi-linear in the security parameter. This last part requires extending the techniques from prior work to handle arithmetic not only over fields, but also over some rings. (Specifically, our method uses arithmetic modulo a power of two, rather than over characteristic-two fields.)



DuckDuckGo

https://eprint.iacr.org/2011/680

Better Bootstrapping in Fully Homomorphic Encryption

Gentry's bootstrapping technique is currently the only known method of obtaining a "pure" fully homomorphic encryption (FHE) schemes, and it may offers performance advantages even in cases that do not require pure FHE (such as when using the new noise-control technique of Brakerski-Gentry-Vaikuntanathan). The main bottleneck in bootstrapping is the need to evaluate homomorphically the reduction of one integer modulo another. This is typically done by emulating a binary modular reduction circuit, using bit operations on binary representation of integers. We present a simpler approach that bypasses the homomorphic modular-reduction bottleneck to some extent, by working with a modulus very close to a power of two. Our method is easier to describe and implement than the generic binary circuit approach, and is likely to be faster in practice. In some cases it also allows us to store the encryption of the secret key as a single ciphertext, thus reducing the size of the public key. We also show how to combine our new method with the SIMD homomorphic computation techniques of Smart-Vercauteren and Gentry-Halevi-Smart, to get a bootstrapping method that works in time quasi-linear in the security parameter. This last part requires extending the techniques from prior work to handle arithmetic not only over fields, but also over some rings. (Specifically, our method uses arithmetic modulo a power of two, rather than over characteristic-two fields.)

  • General Meta Tags

    15
    • title
      Better Bootstrapping in Fully Homomorphic Encryption
    • charset
      utf-8
    • viewport
      width=device-width, initial-scale=1, shrink-to-fit=no
    • citation_title
      Better Bootstrapping in Fully Homomorphic Encryption
    • citation_author
      Craig Gentry
  • Open Graph Meta Tags

    7
    • og:image
      https://eprint.iacr.org/img/iacrlogo.png
    • og:image:alt
      IACR logo
    • og:url
      https://eprint.iacr.org/2011/680
    • og:site_name
      IACR Cryptology ePrint Archive
    • og:type
      article
  • Link Tags

    4
    • apple-touch-icon
      /img/apple-touch-icon-180x180.png
    • shortcut icon
      /favicon.ico
    • stylesheet
      /css/dist/css/bootstrap.min.css
    • stylesheet
      /css/eprint.css?v=10

Links

26