github.com/quantumblacklabs/kedro
Preview meta tags from the github.com website.
Linked Hostnames
23- 119 links togithub.com
- 9 links todocs.kedro.org
- 5 links todocs.github.com
- 2 links tocamo.githubusercontent.com
- 2 links tokedro.org
- 2 links toresources.github.com
- 1 link toanaconda.org
- 1 link tobestpractices.coreinfrastructure.org
Thumbnail
Search Engine Appearance
https://github.com/quantumblacklabs/kedro
GitHub - kedro-org/kedro: Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.
Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular. - kedro-org/kedro
Bing
GitHub - kedro-org/kedro: Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.
https://github.com/quantumblacklabs/kedro
Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular. - kedro-org/kedro
DuckDuckGo
GitHub - kedro-org/kedro: Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.
Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular. - kedro-org/kedro
General Meta Tags
46- titleGitHub - kedro-org/kedro: Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.
- charsetutf-8
- route-pattern/:user_id/:repository
- route-controllerfiles
- route-actiondisambiguate
Open Graph Meta Tags
7- og:imagehttps://repository-images.githubusercontent.com/182067506/1e7cbf26-ab18-4934-afc7-18b6be796784
- og:image:altKedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable,...
- og:site_nameGitHub
- og:typeobject
- og:titleGitHub - kedro-org/kedro: Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.
Twitter Meta Tags
5- twitter:imagehttps://repository-images.githubusercontent.com/182067506/1e7cbf26-ab18-4934-afc7-18b6be796784
- twitter:site@github
- twitter:cardsummary_large_image
- twitter:titleGitHub - kedro-org/kedro: Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.
- twitter:descriptionKedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable,...
Link Tags
46- alternate iconhttps://github.githubassets.com/favicons/favicon.png
- assetshttps://github.githubassets.com/
- canonicalhttps://github.com/kedro-org/kedro
- dns-prefetchhttps://github.githubassets.com
- dns-prefetchhttps://avatars.githubusercontent.com
Links
156- http://www.sphinx-doc.org/en/master
- https://anaconda.org/conda-forge/kedro
- https://bestpractices.coreinfrastructure.org/projects/6711
- https://camo.githubusercontent.com/4cbc320710cfdb051ada5e5868b85bdf3c70c5a77222639e82d06e18371a43ef/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f616374696f6e732f776f726b666c6f772f7374617475732f6b6564726f2d6f72672f6b6564726f2f616c6c2d636865636b732e796d6c3f6c6162656c3d6d61696e
- https://camo.githubusercontent.com/a8382667eaef214514497cef224f89fd92622fbe244042014084aeff2f19f3ba/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f616374696f6e732f776f726b666c6f772f7374617475732f6b6564726f2d6f72672f6b6564726f2f616c6c2d636865636b732e796d6c3f6272616e63683d646576656c6f70266c6162656c3d646576656c6f70