halfrost.com/go_spatial_search

Preview meta tags from the halfrost.com website.

Linked Hostnames

29

Thumbnail

Search Engine Appearance

Google

https://halfrost.com/go_spatial_search

高效的多维空间点索引算法 — Geohash 和 Google S2

引子 每天我们晚上加班回家,可能都会用到滴滴或者共享单车。打开 app 会看到如下的界面: app 界面上会显示出自己附近一个范围内可用的出租车或者共享单车。假设地图上会显示以自己为圆心,5公里为半径,这个范围内的车。如何实现呢?最直观的想法就是去数据库里面查表,计算并查询车距离用户小于等于5公里的,筛选出来,把数据返回给客户端。 这种做法比较笨,一般也不会这么做。为什么呢?因为这种做法需要对整个表里面的每一项都计算一次相对距离。太耗时了。既然数据量太大,我们就需要分而治之。那么就会想到把地图分块。这样即使每一块里面的每条数据都计算一次相对距离,也比之前全表都计算一次要快很多。 我们也都知道,现在用的比较多的数据库 MySQL、PostgreSQL 都原生支持 B+ 树。这种数据结构能高效的查询。地图分块的过程其实就是一种添加索引的过程,如果能想到一个办法,把地图上的点添加一个合适的索引,并且能够排序,那么就可以利用类似二分查找的方法进行快速查询。 问题就来了,地图上的点是二维的,有经度和纬度,这如何索引呢?如果只针对其中的一个维度,经度或者纬度进行搜索,那搜出来一遍以后还



Bing

高效的多维空间点索引算法 — Geohash 和 Google S2

https://halfrost.com/go_spatial_search

引子 每天我们晚上加班回家,可能都会用到滴滴或者共享单车。打开 app 会看到如下的界面: app 界面上会显示出自己附近一个范围内可用的出租车或者共享单车。假设地图上会显示以自己为圆心,5公里为半径,这个范围内的车。如何实现呢?最直观的想法就是去数据库里面查表,计算并查询车距离用户小于等于5公里的,筛选出来,把数据返回给客户端。 这种做法比较笨,一般也不会这么做。为什么呢?因为这种做法需要对整个表里面的每一项都计算一次相对距离。太耗时了。既然数据量太大,我们就需要分而治之。那么就会想到把地图分块。这样即使每一块里面的每条数据都计算一次相对距离,也比之前全表都计算一次要快很多。 我们也都知道,现在用的比较多的数据库 MySQL、PostgreSQL 都原生支持 B+ 树。这种数据结构能高效的查询。地图分块的过程其实就是一种添加索引的过程,如果能想到一个办法,把地图上的点添加一个合适的索引,并且能够排序,那么就可以利用类似二分查找的方法进行快速查询。 问题就来了,地图上的点是二维的,有经度和纬度,这如何索引呢?如果只针对其中的一个维度,经度或者纬度进行搜索,那搜出来一遍以后还



DuckDuckGo

https://halfrost.com/go_spatial_search

高效的多维空间点索引算法 — Geohash 和 Google S2

引子 每天我们晚上加班回家,可能都会用到滴滴或者共享单车。打开 app 会看到如下的界面: app 界面上会显示出自己附近一个范围内可用的出租车或者共享单车。假设地图上会显示以自己为圆心,5公里为半径,这个范围内的车。如何实现呢?最直观的想法就是去数据库里面查表,计算并查询车距离用户小于等于5公里的,筛选出来,把数据返回给客户端。 这种做法比较笨,一般也不会这么做。为什么呢?因为这种做法需要对整个表里面的每一项都计算一次相对距离。太耗时了。既然数据量太大,我们就需要分而治之。那么就会想到把地图分块。这样即使每一块里面的每条数据都计算一次相对距离,也比之前全表都计算一次要快很多。 我们也都知道,现在用的比较多的数据库 MySQL、PostgreSQL 都原生支持 B+ 树。这种数据结构能高效的查询。地图分块的过程其实就是一种添加索引的过程,如果能想到一个办法,把地图上的点添加一个合适的索引,并且能够排序,那么就可以利用类似二分查找的方法进行快速查询。 问题就来了,地图上的点是二维的,有经度和纬度,这如何索引呢?如果只针对其中的一个维度,经度或者纬度进行搜索,那搜出来一遍以后还

  • General Meta Tags

    14
    • title
      高效的多维空间点索引算法 — Geohash 和 Google S2
    • title
      高效的多维空间点索引算法 — Geohash 和 Google S2
    • charset
      UTF-8
    • theme-color
      #FFFFFF
    • viewport
      width=device-width, initial-scale=1.0 shrink-to-fit=no
  • Open Graph Meta Tags

    8
    • og:site_name
      Halfrost's Field | 冰霜之地
    • og:type
      article
    • og:title
      高效的多维空间点索引算法 — Geohash 和 Google S2
    • og:description
      引子 每天我们晚上加班回家,可能都会用到滴滴或者共享单车。打开 app 会看到如下的界面: app 界面上会显示出自己附近一个范围内可用的出租车或者共享单车。假设地图上会显示以自己为圆心,5公里为半径,这个范围内的车。如何实现呢?最直观的想法就是去数据库里面查表,计算并查询车距离用户小于等于5公里的,筛选出来,把数据返回给客户端。 这种做法比较笨,一般也不会这么做。为什么呢?因为这种做法需要对整个表里面的每一项都计算一次相对距离。太耗时了。既然数据量太大,我们就需要分而治之。那么就会想到把地图分块。这样即使每一块里面的每条数据都计算一次相对距离,也比之前全表都计算一次要快很多。 我们也都知道,现在用的比较多的数据库 MySQL、PostgreSQL 都原生支持 B+ 树。这种数据结构能高效的查询。地图分块的过程其实就是一种添加索引的过程,如果能想到一个办法,把地图上的点添加一个合适的索引,并且能够排序,那么就可以利用类似二分查找的方法进行快速查询。 问题就来了,地图上的点是二维的,有经度和纬度,这如何索引呢?如果只针对其中的一个维度,经度或者纬度进行搜索,那搜出来一遍以后还
    • og:url
      https://halfrost.com/go_spatial_search/
  • Twitter Meta Tags

    11
    • twitter:card
      summary_large_image
    • twitter:title
      高效的多维空间点索引算法 — Geohash 和 Google S2
    • twitter:description
      引子 每天我们晚上加班回家,可能都会用到滴滴或者共享单车。打开 app 会看到如下的界面: app 界面上会显示出自己附近一个范围内可用的出租车或者共享单车。假设地图上会显示以自己为圆心,5公里为半径,这个范围内的车。如何实现呢?最直观的想法就是去数据库里面查表,计算并查询车距离用户小于等于5公里的,筛选出来,把数据返回给客户端。 这种做法比较笨,一般也不会这么做。为什么呢?因为这种做法需要对整个表里面的每一项都计算一次相对距离。太耗时了。既然数据量太大,我们就需要分而治之。那么就会想到把地图分块。这样即使每一块里面的每条数据都计算一次相对距离,也比之前全表都计算一次要快很多。 我们也都知道,现在用的比较多的数据库 MySQL、PostgreSQL 都原生支持 B+ 树。这种数据结构能高效的查询。地图分块的过程其实就是一种添加索引的过程,如果能想到一个办法,把地图上的点添加一个合适的索引,并且能够排序,那么就可以利用类似二分查找的方法进行快速查询。 问题就来了,地图上的点是二维的,有经度和纬度,这如何索引呢?如果只针对其中的一个维度,经度或者纬度进行搜索,那搜出来一遍以后还
    • twitter:url
      https://halfrost.com/go_spatial_search/
    • twitter:image
      https://img.halfrost.com//Blog/ArticleTitleImage/a/0c/ca94ad89b1a7d682f85adf957c600.jpeg
  • Link Tags

    12
    • alternate
      https://halfrost.com/rss/
    • amphtml
      https://halfrost.com/go_spatial_search/amp/
    • apple-touch-icon
      /assets/images/apple-touch-icon.png?v=3035629064
    • apple-touch-icon
      /assets/images/apple-touch-icon-76x76.png?v=3035629064
    • apple-touch-icon
      /assets/images/apple-touch-icon-120x120.png?v=3035629064

Links

67