ieeexplore.ieee.org/document/6970316
Preview meta tags from the ieeexplore.ieee.org website.
Linked Hostnames
2Thumbnail

Search Engine Appearance
MicroFilters: Harnessing twitter for disaster management
As social media grows more rapidly each day, new ways to harness worldwide connectivity are being continually discovered. The role of social media in disaster management emerged in 2012; social media data can yield rescue and aid opportunities for humanitarians. Immediately after a natural disaster, an overwhelming amount of this data floods social workers. Unfortunately, the majority of this data carries no value to disaster responders, who are only interested in location and severity of damage. MicroFilters is a system designed to take advantage of image data by scraping tweets and the links therein for images, then using machine learning to classify them. This classification will eliminate images that do not show direct damage and therefore are not useful to rescue efforts. This paper outlines the development of the MicroFilters system from start to finish, including key technical problems involved such as data sparseness, feature engineering, and classification. The experimental evaluation validates the proposal and shows the efficiency of our techniques (average 88% recall and 70% precision). We also discuss opportunities for future development of the MicroFilters system.
Bing
MicroFilters: Harnessing twitter for disaster management
As social media grows more rapidly each day, new ways to harness worldwide connectivity are being continually discovered. The role of social media in disaster management emerged in 2012; social media data can yield rescue and aid opportunities for humanitarians. Immediately after a natural disaster, an overwhelming amount of this data floods social workers. Unfortunately, the majority of this data carries no value to disaster responders, who are only interested in location and severity of damage. MicroFilters is a system designed to take advantage of image data by scraping tweets and the links therein for images, then using machine learning to classify them. This classification will eliminate images that do not show direct damage and therefore are not useful to rescue efforts. This paper outlines the development of the MicroFilters system from start to finish, including key technical problems involved such as data sparseness, feature engineering, and classification. The experimental evaluation validates the proposal and shows the efficiency of our techniques (average 88% recall and 70% precision). We also discuss opportunities for future development of the MicroFilters system.
DuckDuckGo
MicroFilters: Harnessing twitter for disaster management
As social media grows more rapidly each day, new ways to harness worldwide connectivity are being continually discovered. The role of social media in disaster management emerged in 2012; social media data can yield rescue and aid opportunities for humanitarians. Immediately after a natural disaster, an overwhelming amount of this data floods social workers. Unfortunately, the majority of this data carries no value to disaster responders, who are only interested in location and severity of damage. MicroFilters is a system designed to take advantage of image data by scraping tweets and the links therein for images, then using machine learning to classify them. This classification will eliminate images that do not show direct damage and therefore are not useful to rescue efforts. This paper outlines the development of the MicroFilters system from start to finish, including key technical problems involved such as data sparseness, feature engineering, and classification. The experimental evaluation validates the proposal and shows the efficiency of our techniques (average 88% recall and 70% precision). We also discuss opportunities for future development of the MicroFilters system.
General Meta Tags
12- titleMicroFilters: Harnessing twitter for disaster management | IEEE Conference Publication | IEEE Xplore
- google-site-verificationqibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
- DescriptionAs social media grows more rapidly each day, new ways to harness worldwide connectivity are being continually discovered. The role of social media in disaster m
- Content-Typetext/html; charset=utf-8
- viewportwidth=device-width, initial-scale=1.0
Open Graph Meta Tags
3- og:imagehttps://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
- og:titleMicroFilters: Harnessing twitter for disaster management
- og:descriptionAs social media grows more rapidly each day, new ways to harness worldwide connectivity are being continually discovered. The role of social media in disaster management emerged in 2012; social media data can yield rescue and aid opportunities for humanitarians. Immediately after a natural disaster, an overwhelming amount of this data floods social workers. Unfortunately, the majority of this data carries no value to disaster responders, who are only interested in location and severity of damage. MicroFilters is a system designed to take advantage of image data by scraping tweets and the links therein for images, then using machine learning to classify them. This classification will eliminate images that do not show direct damage and therefore are not useful to rescue efforts. This paper outlines the development of the MicroFilters system from start to finish, including key technical problems involved such as data sparseness, feature engineering, and classification. The experimental evaluation validates the proposal and shows the efficiency of our techniques (average 88% recall and 70% precision). We also discuss opportunities for future development of the MicroFilters system.
Twitter Meta Tags
1- twitter:cardsummary
Link Tags
9- canonicalhttps://ieeexplore.ieee.org/document/6970316
- icon/assets/img/favicon.ico
- stylesheethttps://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
- stylesheet/assets/css/simplePassMeter.min.css?cv=20250812_00000
- stylesheet/assets/dist/ng-new/styles.css?cv=20250812_00000
Links
17- http://www.ieee.org/about/help/security_privacy.html
- http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
- https://ieeexplore.ieee.org/Xplorehelp
- https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
- https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/accessibility-statement