ieeexplore.ieee.org/document/7363902
Preview meta tags from the ieeexplore.ieee.org website.
Linked Hostnames
2Thumbnail

Search Engine Appearance
Analysis and optimization in smart manufacturing based on a reusable knowledge base for process performance models
In this paper, we propose an architectural design and software framework for fast development of descriptive, diagnostic, predictive, and prescriptive analytics solutions for dynamic production processes. The proposed architecture and framework will support the storage of modular, extensible, and reusable Knowledge Base (KB) of process performance models. The approach requires the development of automatic methods that can translate the high-level models in the reusable KB into low-level specialized models required by a variety of underlying analysis tools, including data manipulation, optimization, statistical learning, estimation, and simulation. We also propose an organization and key structure for the reusable KB, composed of atomic and composite process performance models and domain-specific dashboards. Furthermore, we illustrate the use of the proposed architecture and framework by performing diagnostic tasks on a composite performance model.
Bing
Analysis and optimization in smart manufacturing based on a reusable knowledge base for process performance models
In this paper, we propose an architectural design and software framework for fast development of descriptive, diagnostic, predictive, and prescriptive analytics solutions for dynamic production processes. The proposed architecture and framework will support the storage of modular, extensible, and reusable Knowledge Base (KB) of process performance models. The approach requires the development of automatic methods that can translate the high-level models in the reusable KB into low-level specialized models required by a variety of underlying analysis tools, including data manipulation, optimization, statistical learning, estimation, and simulation. We also propose an organization and key structure for the reusable KB, composed of atomic and composite process performance models and domain-specific dashboards. Furthermore, we illustrate the use of the proposed architecture and framework by performing diagnostic tasks on a composite performance model.
DuckDuckGo
Analysis and optimization in smart manufacturing based on a reusable knowledge base for process performance models
In this paper, we propose an architectural design and software framework for fast development of descriptive, diagnostic, predictive, and prescriptive analytics solutions for dynamic production processes. The proposed architecture and framework will support the storage of modular, extensible, and reusable Knowledge Base (KB) of process performance models. The approach requires the development of automatic methods that can translate the high-level models in the reusable KB into low-level specialized models required by a variety of underlying analysis tools, including data manipulation, optimization, statistical learning, estimation, and simulation. We also propose an organization and key structure for the reusable KB, composed of atomic and composite process performance models and domain-specific dashboards. Furthermore, we illustrate the use of the proposed architecture and framework by performing diagnostic tasks on a composite performance model.
General Meta Tags
12- titleAnalysis and optimization in smart manufacturing based on a reusable knowledge base for process performance models | IEEE Conference Publication | IEEE Xplore
- google-site-verificationqibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
- DescriptionIn this paper, we propose an architectural design and software framework for fast development of descriptive, diagnostic, predictive, and prescriptive analytics
- Content-Typetext/html; charset=utf-8
- viewportwidth=device-width, initial-scale=1.0
Open Graph Meta Tags
3- og:imagehttps://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
- og:titleAnalysis and optimization in smart manufacturing based on a reusable knowledge base for process performance models
- og:descriptionIn this paper, we propose an architectural design and software framework for fast development of descriptive, diagnostic, predictive, and prescriptive analytics solutions for dynamic production processes. The proposed architecture and framework will support the storage of modular, extensible, and reusable Knowledge Base (KB) of process performance models. The approach requires the development of automatic methods that can translate the high-level models in the reusable KB into low-level specialized models required by a variety of underlying analysis tools, including data manipulation, optimization, statistical learning, estimation, and simulation. We also propose an organization and key structure for the reusable KB, composed of atomic and composite process performance models and domain-specific dashboards. Furthermore, we illustrate the use of the proposed architecture and framework by performing diagnostic tasks on a composite performance model.
Twitter Meta Tags
1- twitter:cardsummary
Link Tags
9- canonicalhttps://ieeexplore.ieee.org/document/7363902
- icon/assets/img/favicon.ico
- stylesheethttps://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
- stylesheet/assets/css/simplePassMeter.min.css?cv=20250812_00000
- stylesheet/assets/dist/ng-new/styles.css?cv=20250812_00000
Links
17- http://www.ieee.org/about/help/security_privacy.html
- http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
- https://ieeexplore.ieee.org/Xplorehelp
- https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
- https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/accessibility-statement