ieeexplore.ieee.org/document/9665828

Preview meta tags from the ieeexplore.ieee.org website.

Linked Hostnames

2

Thumbnail

Search Engine Appearance

Google

https://ieeexplore.ieee.org/document/9665828

Direct Dense Pose Estimation

Dense human pose estimation is the problem of learning dense correspondences between RGB images and the surfaces of human bodies, which finds various applications, such as human body reconstruction, human pose transfer, and human action recognition. Prior dense pose estimation methods are all based on Mask R-CNN framework and operate in a top-down manner of first attempting to identify a bounding box for each person and matching dense correspondences in each bounding box. Consequently, these methods lack robustness due to their critical dependence on the Mask R-CNN detection, and the runtime increases drastically as the number of persons in the image increases. We therefore propose a novel alternative method for solving the dense pose estimation problem, called Direct Dense Pose (DDP). DDP first predicts the instance mask and global IUV representation separately and then combines them together. We also propose a simple yet effective 2D temporal-smoothing scheme to alleviate the temporal jitters when dealing with video data. Experiments demonstrate that DDP overcomes the limitations of previous top-down baseline methods and achieves competitive accuracy. In addition, DDP is computationally more efficient than previous dense pose estimation methods, and it reduces jitters when applied to a video sequence, which is a problem plaguing the previous methods.



Bing

Direct Dense Pose Estimation

https://ieeexplore.ieee.org/document/9665828

Dense human pose estimation is the problem of learning dense correspondences between RGB images and the surfaces of human bodies, which finds various applications, such as human body reconstruction, human pose transfer, and human action recognition. Prior dense pose estimation methods are all based on Mask R-CNN framework and operate in a top-down manner of first attempting to identify a bounding box for each person and matching dense correspondences in each bounding box. Consequently, these methods lack robustness due to their critical dependence on the Mask R-CNN detection, and the runtime increases drastically as the number of persons in the image increases. We therefore propose a novel alternative method for solving the dense pose estimation problem, called Direct Dense Pose (DDP). DDP first predicts the instance mask and global IUV representation separately and then combines them together. We also propose a simple yet effective 2D temporal-smoothing scheme to alleviate the temporal jitters when dealing with video data. Experiments demonstrate that DDP overcomes the limitations of previous top-down baseline methods and achieves competitive accuracy. In addition, DDP is computationally more efficient than previous dense pose estimation methods, and it reduces jitters when applied to a video sequence, which is a problem plaguing the previous methods.



DuckDuckGo

https://ieeexplore.ieee.org/document/9665828

Direct Dense Pose Estimation

Dense human pose estimation is the problem of learning dense correspondences between RGB images and the surfaces of human bodies, which finds various applications, such as human body reconstruction, human pose transfer, and human action recognition. Prior dense pose estimation methods are all based on Mask R-CNN framework and operate in a top-down manner of first attempting to identify a bounding box for each person and matching dense correspondences in each bounding box. Consequently, these methods lack robustness due to their critical dependence on the Mask R-CNN detection, and the runtime increases drastically as the number of persons in the image increases. We therefore propose a novel alternative method for solving the dense pose estimation problem, called Direct Dense Pose (DDP). DDP first predicts the instance mask and global IUV representation separately and then combines them together. We also propose a simple yet effective 2D temporal-smoothing scheme to alleviate the temporal jitters when dealing with video data. Experiments demonstrate that DDP overcomes the limitations of previous top-down baseline methods and achieves competitive accuracy. In addition, DDP is computationally more efficient than previous dense pose estimation methods, and it reduces jitters when applied to a video sequence, which is a problem plaguing the previous methods.

  • General Meta Tags

    12
    • title
      Direct Dense Pose Estimation | IEEE Conference Publication | IEEE Xplore
    • google-site-verification
      qibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
    • Description
      Dense human pose estimation is the problem of learning dense correspondences between RGB images and the surfaces of human bodies, which finds various applicatio
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0
  • Open Graph Meta Tags

    3
    • og:image
      https://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
    • og:title
      Direct Dense Pose Estimation
    • og:description
      Dense human pose estimation is the problem of learning dense correspondences between RGB images and the surfaces of human bodies, which finds various applications, such as human body reconstruction, human pose transfer, and human action recognition. Prior dense pose estimation methods are all based on Mask R-CNN framework and operate in a top-down manner of first attempting to identify a bounding box for each person and matching dense correspondences in each bounding box. Consequently, these methods lack robustness due to their critical dependence on the Mask R-CNN detection, and the runtime increases drastically as the number of persons in the image increases. We therefore propose a novel alternative method for solving the dense pose estimation problem, called Direct Dense Pose (DDP). DDP first predicts the instance mask and global IUV representation separately and then combines them together. We also propose a simple yet effective 2D temporal-smoothing scheme to alleviate the temporal jitters when dealing with video data. Experiments demonstrate that DDP overcomes the limitations of previous top-down baseline methods and achieves competitive accuracy. In addition, DDP is computationally more efficient than previous dense pose estimation methods, and it reduces jitters when applied to a video sequence, which is a problem plaguing the previous methods.
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    9
    • canonical
      https://ieeexplore.ieee.org/document/9665828
    • icon
      /assets/img/favicon.ico
    • stylesheet
      https://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
    • stylesheet
      /assets/css/simplePassMeter.min.css?cv=20250701_00000
    • stylesheet
      /assets/dist/ng-new/styles.css?cv=20250701_00000

Links

17