ieeexplore.ieee.org/document/9866910
Preview meta tags from the ieeexplore.ieee.org website.
Linked Hostnames
2Thumbnail

Search Engine Appearance
3DVQA: Visual Question Answering for 3D Environments
Visual Question Answering (VQA) is a widely studied problem in computer vision and natural language processing. However, current approaches to VQA have been investigated primarily in the 2D image domain. We study VQA in the 3D domain, with our input being point clouds of real-world 3D scenes, instead of 2D images. We believe that this 3D data modality provide richer spatial relation information that is of interest in the VQA task. In this paper, we introduce the 3DVQA-ScanNet dataset, the first VQA dataset in 3D, and we investigate the performance of a spectrum of baseline approaches on the 3D VQA task.
Bing
3DVQA: Visual Question Answering for 3D Environments
Visual Question Answering (VQA) is a widely studied problem in computer vision and natural language processing. However, current approaches to VQA have been investigated primarily in the 2D image domain. We study VQA in the 3D domain, with our input being point clouds of real-world 3D scenes, instead of 2D images. We believe that this 3D data modality provide richer spatial relation information that is of interest in the VQA task. In this paper, we introduce the 3DVQA-ScanNet dataset, the first VQA dataset in 3D, and we investigate the performance of a spectrum of baseline approaches on the 3D VQA task.
DuckDuckGo
3DVQA: Visual Question Answering for 3D Environments
Visual Question Answering (VQA) is a widely studied problem in computer vision and natural language processing. However, current approaches to VQA have been investigated primarily in the 2D image domain. We study VQA in the 3D domain, with our input being point clouds of real-world 3D scenes, instead of 2D images. We believe that this 3D data modality provide richer spatial relation information that is of interest in the VQA task. In this paper, we introduce the 3DVQA-ScanNet dataset, the first VQA dataset in 3D, and we investigate the performance of a spectrum of baseline approaches on the 3D VQA task.
General Meta Tags
12- title3DVQA: Visual Question Answering for 3D Environments | IEEE Conference Publication | IEEE Xplore
- google-site-verificationqibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
- DescriptionVisual Question Answering (VQA) is a widely studied problem in computer vision and natural language processing. However, current approaches to VQA have been inv
- Content-Typetext/html; charset=utf-8
- viewportwidth=device-width, initial-scale=1.0
Open Graph Meta Tags
3- og:imagehttps://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
- og:title3DVQA: Visual Question Answering for 3D Environments
- og:descriptionVisual Question Answering (VQA) is a widely studied problem in computer vision and natural language processing. However, current approaches to VQA have been investigated primarily in the 2D image domain. We study VQA in the 3D domain, with our input being point clouds of real-world 3D scenes, instead of 2D images. We believe that this 3D data modality provide richer spatial relation information that is of interest in the VQA task. In this paper, we introduce the 3DVQA-ScanNet dataset, the first VQA dataset in 3D, and we investigate the performance of a spectrum of baseline approaches on the 3D VQA task.
Twitter Meta Tags
1- twitter:cardsummary
Link Tags
9- canonicalhttps://ieeexplore.ieee.org/document/9866910
- icon/assets/img/favicon.ico
- stylesheethttps://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
- stylesheet/assets/css/simplePassMeter.min.css?cv=20250701_00000
- stylesheet/assets/dist/ng-new/styles.css?cv=20250701_00000
Links
17- http://www.ieee.org/about/help/security_privacy.html
- http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
- https://ieeexplore.ieee.org/Xplorehelp
- https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
- https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/accessibility-statement