ieeexplore.ieee.org/document/9867424

Preview meta tags from the ieeexplore.ieee.org website.

Linked Hostnames

2

Thumbnail

Search Engine Appearance

Google

https://ieeexplore.ieee.org/document/9867424

Robust Approximate Simulation for Hierarchical Control of Piecewise Affine Systems under Bounded Disturbances

Piecewise affine (PWA) systems are widely applied in many practical cases such as the control of nonlinear systems and hybrid dynamics. However, most of the existing PWA control methods have poor scalability with respect to the number of modes and system dimensions and may not be robust to the disturbances in performance. In this paper, we present a robust approximate simulation based control method for PWA systems under bounded external disturbances. First, a lower-dimensional linear system (abstraction) and an associated interface are designed to enable the output of the PWA system (concrete system) to track the output of the abstraction. Then, a Lyapunov-like simulation function is designed to show the boundedness of the output errors between the two systems. Furthermore, the results obtained for linear abstraction are extended to the case that a simpler PWA system is the abstraction. To illustrate the effectiveness of the proposed approach, simulation results are provided for two design examples.



Bing

Robust Approximate Simulation for Hierarchical Control of Piecewise Affine Systems under Bounded Disturbances

https://ieeexplore.ieee.org/document/9867424

Piecewise affine (PWA) systems are widely applied in many practical cases such as the control of nonlinear systems and hybrid dynamics. However, most of the existing PWA control methods have poor scalability with respect to the number of modes and system dimensions and may not be robust to the disturbances in performance. In this paper, we present a robust approximate simulation based control method for PWA systems under bounded external disturbances. First, a lower-dimensional linear system (abstraction) and an associated interface are designed to enable the output of the PWA system (concrete system) to track the output of the abstraction. Then, a Lyapunov-like simulation function is designed to show the boundedness of the output errors between the two systems. Furthermore, the results obtained for linear abstraction are extended to the case that a simpler PWA system is the abstraction. To illustrate the effectiveness of the proposed approach, simulation results are provided for two design examples.



DuckDuckGo

https://ieeexplore.ieee.org/document/9867424

Robust Approximate Simulation for Hierarchical Control of Piecewise Affine Systems under Bounded Disturbances

Piecewise affine (PWA) systems are widely applied in many practical cases such as the control of nonlinear systems and hybrid dynamics. However, most of the existing PWA control methods have poor scalability with respect to the number of modes and system dimensions and may not be robust to the disturbances in performance. In this paper, we present a robust approximate simulation based control method for PWA systems under bounded external disturbances. First, a lower-dimensional linear system (abstraction) and an associated interface are designed to enable the output of the PWA system (concrete system) to track the output of the abstraction. Then, a Lyapunov-like simulation function is designed to show the boundedness of the output errors between the two systems. Furthermore, the results obtained for linear abstraction are extended to the case that a simpler PWA system is the abstraction. To illustrate the effectiveness of the proposed approach, simulation results are provided for two design examples.

  • General Meta Tags

    12
    • title
      Robust Approximate Simulation for Hierarchical Control of Piecewise Affine Systems under Bounded Disturbances | IEEE Conference Publication | IEEE Xplore
    • google-site-verification
      qibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
    • Description
      Piecewise affine (PWA) systems are widely applied in many practical cases such as the control of nonlinear systems and hybrid dynamics. However, most of the exi
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0
  • Open Graph Meta Tags

    3
    • og:image
      https://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
    • og:title
      Robust Approximate Simulation for Hierarchical Control of Piecewise Affine Systems under Bounded Disturbances
    • og:description
      Piecewise affine (PWA) systems are widely applied in many practical cases such as the control of nonlinear systems and hybrid dynamics. However, most of the existing PWA control methods have poor scalability with respect to the number of modes and system dimensions and may not be robust to the disturbances in performance. In this paper, we present a robust approximate simulation based control method for PWA systems under bounded external disturbances. First, a lower-dimensional linear system (abstraction) and an associated interface are designed to enable the output of the PWA system (concrete system) to track the output of the abstraction. Then, a Lyapunov-like simulation function is designed to show the boundedness of the output errors between the two systems. Furthermore, the results obtained for linear abstraction are extended to the case that a simpler PWA system is the abstraction. To illustrate the effectiveness of the proposed approach, simulation results are provided for two design examples.
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    9
    • canonical
      https://ieeexplore.ieee.org/document/9867424
    • icon
      /assets/img/favicon.ico
    • stylesheet
      https://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
    • stylesheet
      /assets/css/simplePassMeter.min.css?cv=20250812_00000
    • stylesheet
      /assets/dist/ng-new/styles.css?cv=20250812_00000

Links

17