ieeexplore.ieee.org/document/9889159

Preview meta tags from the ieeexplore.ieee.org website.

Linked Hostnames

2

Thumbnail

Search Engine Appearance

Google

https://ieeexplore.ieee.org/document/9889159

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

Toward the development of effective and efficient brain–computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram (EEG) is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning (DL) framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson’s matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected (FC) softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and groupwise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet dataset), 96.24% and 80.89% (high gamma dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step toward better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain MI. A DL library for EEG task classification including the code for this study is open source at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/SuperBruceJia/</uri> EEG-DL for scientific research.



Bing

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

https://ieeexplore.ieee.org/document/9889159

Toward the development of effective and efficient brain–computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram (EEG) is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning (DL) framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson’s matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected (FC) softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and groupwise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet dataset), 96.24% and 80.89% (high gamma dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step toward better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain MI. A DL library for EEG task classification including the code for this study is open source at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/SuperBruceJia/</uri> EEG-DL for scientific research.



DuckDuckGo

https://ieeexplore.ieee.org/document/9889159

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

Toward the development of effective and efficient brain–computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram (EEG) is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning (DL) framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson’s matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected (FC) softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and groupwise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet dataset), 96.24% and 80.89% (high gamma dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step toward better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain MI. A DL library for EEG task classification including the code for this study is open source at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/SuperBruceJia/</uri> EEG-DL for scientific research.

  • General Meta Tags

    12
    • title
      GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals | IEEE Journals & Magazine | IEEE Xplore
    • google-site-verification
      qibYCgIKpiVF_VVjPYutgStwKn-0-KBB6Gw4Fc57FZg
    • Description
      Toward the development of effective and efficient brain–computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram
    • Content-Type
      text/html; charset=utf-8
    • viewport
      width=device-width, initial-scale=1.0
  • Open Graph Meta Tags

    3
    • og:image
      https://ieeexplore.ieee.org/assets/img/ieee_logo_smedia_200X200.png
    • og:title
      GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals
    • og:description
      Toward the development of effective and efficient brain–computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram (EEG) is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning (DL) framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson’s matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected (FC) softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and groupwise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet dataset), 96.24% and 80.89% (high gamma dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step toward better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain MI. A DL library for EEG task classification including the code for this study is open source at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/SuperBruceJia/</uri> EEG-DL for scientific research.
  • Twitter Meta Tags

    1
    • twitter:card
      summary
  • Link Tags

    9
    • canonical
      https://ieeexplore.ieee.org/document/9889159
    • icon
      /assets/img/favicon.ico
    • stylesheet
      https://ieeexplore.ieee.org/assets/css/osano-cookie-consent-xplore.css
    • stylesheet
      /assets/css/simplePassMeter.min.css?cv=20250812_00000
    • stylesheet
      /assets/dist/ng-new/styles.css?cv=20250812_00000

Links

17