link.springer.com/article/10.1007/s00039-017-0417-8
Preview meta tags from the link.springer.com website.
Linked Hostnames
21- 31 links tolink.springer.com
- 10 links towww.springernature.com
- 5 links toscholar.google.com
- 5 links towww.ams.org
- 5 links towww.emis.de
- 2 links tocitation-needed.springer.com
- 2 links todoi.org
- 2 links toscholar.google.co.uk
Thumbnail
Search Engine Appearance
https://link.springer.com/article/10.1007/s00039-017-0417-8
Macroscopic scalar curvature and areas of cycles - Geometric and Functional Analysis
In this paper we prove the following. Let $${\Sigma}$$ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \
Bing
Macroscopic scalar curvature and areas of cycles - Geometric and Functional Analysis
https://link.springer.com/article/10.1007/s00039-017-0417-8
In this paper we prove the following. Let $${\Sigma}$$ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \
DuckDuckGo
Macroscopic scalar curvature and areas of cycles - Geometric and Functional Analysis
In this paper we prove the following. Let $${\Sigma}$$ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \
General Meta Tags
77- titleMacroscopic scalar curvature and areas of cycles | Geometric and Functional Analysis
- charsetUTF-8
- X-UA-CompatibleIE=edge
- applicable-devicepc,mobile
- viewportwidth=device-width, initial-scale=1
Open Graph Meta Tags
6- og:urlhttps://link.springer.com/article/10.1007/s00039-017-0417-8
- og:typearticle
- og:site_nameSpringerLink
- og:titleMacroscopic scalar curvature and areas of cycles - Geometric and Functional Analysis
- og:descriptionIn this paper we prove the following. Let $${\Sigma}$$ Σ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \times \mathbb{S}^1}$$ Σ × S 1 . Given an upper bound on the volumes of unit balls in the Riemannian universal cover $${(\widetilde{\Sigma\times \mathbb{S}^1},\widetilde{g})}$$ ( Σ × S 1 ~ , g ~ ) , we get a lower bound on the area of the $${\mathbb{Z}_2}$$ Z 2 –homology class $${[\Sigma \times \ast]}$$ [ Σ × * ] on $${\Sigma \times \mathbb{S}^1}$$ Σ × S 1 , proportional to the hyperbolic area of $${\Sigma}$$ Σ . The theorem is based on a theorem of Guth and is analogous to a theorem of Kronheimer and Mrowka involving scalar curvature.
Twitter Meta Tags
6- twitter:site@SpringerLink
- twitter:cardsummary_large_image
- twitter:image:altContent cover image
- twitter:titleMacroscopic scalar curvature and areas of cycles
- twitter:descriptionGeometric and Functional Analysis - In this paper we prove the following. Let $${\Sigma}$$ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \times...
Item Prop Meta Tags
3- position1
- position2
- position3
Link Tags
9- apple-touch-icon/oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
- canonicalhttps://link.springer.com/article/10.1007/s00039-017-0417-8
- icon/oscar-static/img/favicons/darwin/android-chrome-192x192.png
- icon/oscar-static/img/favicons/darwin/favicon-32x32.png
- icon/oscar-static/img/favicons/darwin/favicon-16x16.png
Emails
2Links
77- http://scholar.google.com/scholar_lookup?&title=Scalar%20curvature%20and%20the%20thurston%20norm&journal=Math.%20Res.%20Lett.&doi=10.4310%2FMRL.1997.v4.n6.a12&volume=4&issue=6&pages=931-937&publication_year=1997&author=Kronheimer%2CP.%20B.&author=Mrowka%2CT.%20S.
- http://scholar.google.com/scholar_lookup?&title=Surfaces%20minimizing%20area%20in%20their%20homology%20class%20and%20group%20actions%20on%203-manifolds&journal=Math.%20Z.&doi=10.1007%2FBF01161639&volume=199&issue=4&pages=501-509&publication_year=1988&author=Hass%2CJ.
- http://scholar.google.com/scholar_lookup?&title=Systolic%20inequalities%20and%20minimal%20hypersurfaces&journal=Geom.%20Funct.%20Anal.&doi=10.1007%2Fs00039-010-0052-0&volume=19&issue=6&pages=1688-1692&publication_year=2010&author=Guth%2CL.
- http://scholar.google.com/scholar_lookup?&title=Volume%20and%20bounded%20cohomology&journal=Inst.%20Hautes%20%C3%89tudes%20Sci.%20Publ.%20Math.&volume=19&issue=56&pages=5-99&publication_year=1982&author=Gromov%2CM.
- http://scholar.google.com/scholar_lookup?&title=Volumes%20of%20balls%20in%20large%20riemannian%20manifolds&journal=Ann.%20of%20Math.&doi=10.4007%2Fannals.2011.173.1.2&volume=173&issue=1&pages=51-76&publication_year=2011&author=Guth%2CL.