link.springer.com/article/10.1007/s00039-017-0417-8

Preview meta tags from the link.springer.com website.

Linked Hostnames

21

Thumbnail

Search Engine Appearance

Google

https://link.springer.com/article/10.1007/s00039-017-0417-8

Macroscopic scalar curvature and areas of cycles - Geometric and Functional Analysis

In this paper we prove the following. Let $${\Sigma}$$ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \



Bing

Macroscopic scalar curvature and areas of cycles - Geometric and Functional Analysis

https://link.springer.com/article/10.1007/s00039-017-0417-8

In this paper we prove the following. Let $${\Sigma}$$ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \



DuckDuckGo

https://link.springer.com/article/10.1007/s00039-017-0417-8

Macroscopic scalar curvature and areas of cycles - Geometric and Functional Analysis

In this paper we prove the following. Let $${\Sigma}$$ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \

  • General Meta Tags

    77
    • title
      Macroscopic scalar curvature and areas of cycles | Geometric and Functional Analysis
    • charset
      UTF-8
    • X-UA-Compatible
      IE=edge
    • applicable-device
      pc,mobile
    • viewport
      width=device-width, initial-scale=1
  • Open Graph Meta Tags

    6
    • og:url
      https://link.springer.com/article/10.1007/s00039-017-0417-8
    • og:type
      article
    • og:site_name
      SpringerLink
    • og:title
      Macroscopic scalar curvature and areas of cycles - Geometric and Functional Analysis
    • og:description
      In this paper we prove the following. Let $${\Sigma}$$ Σ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \times \mathbb{S}^1}$$ Σ × S 1 . Given an upper bound on the volumes of unit balls in the Riemannian universal cover $${(\widetilde{\Sigma\times \mathbb{S}^1},\widetilde{g})}$$ ( Σ × S 1 ~ , g ~ ) , we get a lower bound on the area of the $${\mathbb{Z}_2}$$ Z 2 –homology class $${[\Sigma \times \ast]}$$ [ Σ × * ] on $${\Sigma \times \mathbb{S}^1}$$ Σ × S 1 , proportional to the hyperbolic area of $${\Sigma}$$ Σ . The theorem is based on a theorem of Guth and is analogous to a theorem of Kronheimer and Mrowka involving scalar curvature.
  • Twitter Meta Tags

    6
    • twitter:site
      @SpringerLink
    • twitter:card
      summary_large_image
    • twitter:image:alt
      Content cover image
    • twitter:title
      Macroscopic scalar curvature and areas of cycles
    • twitter:description
      Geometric and Functional Analysis - In this paper we prove the following. Let $${\Sigma}$$ be an n–dimensional closed hyperbolic manifold and let g be a Riemannian metric on $${\Sigma \times...
  • Item Prop Meta Tags

    3
    • position
      1
    • position
      2
    • position
      3
  • Link Tags

    9
    • apple-touch-icon
      /oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
    • canonical
      https://link.springer.com/article/10.1007/s00039-017-0417-8
    • icon
      /oscar-static/img/favicons/darwin/android-chrome-192x192.png
    • icon
      /oscar-static/img/favicons/darwin/favicon-32x32.png
    • icon
      /oscar-static/img/favicons/darwin/favicon-16x16.png

Emails

2

Links

77