math.answers.com/algebra/Integral_of_sin_square_root_x

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/algebra/Integral_of_sin_square_root_x

Integral of sin square root x? - Answers

For ∫ sin(√x) dx let y = √x = x1/2 → dy = 1/2 x-1/2 dx → 2x1/2 dy = dx → 2y dy = dx → ∫ sin(x1/2) dx = ∫(sin y) 2y dy Now: ∫ uv dx = u∫v dx - ∫(u'∫v dx) dx → ∫(sin y) 2y dy = ∫2y sin y dy = 2y ∫sin y dy - ∫(2 ∫sin y dy) dy = -2y cos y + 2 sin y + C = 2 sin y - 2y cos y + C → ∫ sin(√x) dx = 2 sin(√x) - 2(√x) cos(√x) + C



Bing

Integral of sin square root x? - Answers

https://math.answers.com/algebra/Integral_of_sin_square_root_x

For ∫ sin(√x) dx let y = √x = x1/2 → dy = 1/2 x-1/2 dx → 2x1/2 dy = dx → 2y dy = dx → ∫ sin(x1/2) dx = ∫(sin y) 2y dy Now: ∫ uv dx = u∫v dx - ∫(u'∫v dx) dx → ∫(sin y) 2y dy = ∫2y sin y dy = 2y ∫sin y dy - ∫(2 ∫sin y dy) dy = -2y cos y + 2 sin y + C = 2 sin y - 2y cos y + C → ∫ sin(√x) dx = 2 sin(√x) - 2(√x) cos(√x) + C



DuckDuckGo

https://math.answers.com/algebra/Integral_of_sin_square_root_x

Integral of sin square root x? - Answers

For ∫ sin(√x) dx let y = √x = x1/2 → dy = 1/2 x-1/2 dx → 2x1/2 dy = dx → 2y dy = dx → ∫ sin(x1/2) dx = ∫(sin y) 2y dy Now: ∫ uv dx = u∫v dx - ∫(u'∫v dx) dx → ∫(sin y) 2y dy = ∫2y sin y dy = 2y ∫sin y dy - ∫(2 ∫sin y dy) dy = -2y cos y + 2 sin y + C = 2 sin y - 2y cos y + C → ∫ sin(√x) dx = 2 sin(√x) - 2(√x) cos(√x) + C

  • General Meta Tags

    22
    • title
      Integral of sin square root x? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      For ∫ sin(√x) dx let y = √x = x1/2 → dy = 1/2 x-1/2 dx → 2x1/2 dy = dx → 2y dy = dx → ∫ sin(x1/2) dx = ∫(sin y) 2y dy Now: ∫ uv dx = u∫v dx - ∫(u'∫v dx) dx → ∫(sin y) 2y dy = ∫2y sin y dy = 2y ∫sin y dy - ∫(2 ∫sin y dy) dy = -2y cos y + 2 sin y + C = 2 sin y - 2y cos y + C → ∫ sin(√x) dx = 2 sin(√x) - 2(√x) cos(√x) + C
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/algebra/Integral_of_sin_square_root_x
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

57