math.answers.com/basic-math/Is_the_square_root_of_8_a_rational_number
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Is the square root of 8 a rational number? - Answers
No, it is irrational. Here is the proof: Let's start out with the basic inequality 4 < 8 < 9. Now, we'll take the square root of this inequality: 2 < √8 < 3. If you subtract all numbers by 2, you get: 0 < √8 - 2 < 1. If √8 is rational, then it can be expressed as a fraction of two integers, m/n. This next part is the only remotely tricky part of this proof, so pay attention. We're going to assume that m/n is in its most reduced form; i.e., that the value for n is the smallest it can be and still be able to represent √8. Therefore, √8n must be an integer, and n must be the smallest multiple of √8 to make this true. If you don't understand this part, read it again, because this is the heart of the proof. Now, we're going to multiply √8n by (√8 - 2). This gives 8n - 2√8n. Well, 8n is an integer, and, as we explained above, √8n is also an integer; therefore, 8n - 2√8n is an integer as well. We're going to rearrange this expression to (√8n - 2n)√8 and then set the term (√8n - 2n) equal to p, for simplicity. This gives us the expression √8p, which is equal to 8n - 2√8n, and is an integer. Remember, from above, that 0 < √8 - 2 < 1. If we multiply this inequality by n, we get 0 < √8n - 2n < n, or, from what we defined above, 0 < p < n. This means that p < n and thus √8p < √8n. We've already determined that both √8p and √8n are integers, but recall that we said n was the smallest multiple of √8 to yield an integer value. Thus, √8p < √8n is a contradiction; therefore √8 can't be rational and so must be irrational. Q.E.D.
Bing
Is the square root of 8 a rational number? - Answers
No, it is irrational. Here is the proof: Let's start out with the basic inequality 4 < 8 < 9. Now, we'll take the square root of this inequality: 2 < √8 < 3. If you subtract all numbers by 2, you get: 0 < √8 - 2 < 1. If √8 is rational, then it can be expressed as a fraction of two integers, m/n. This next part is the only remotely tricky part of this proof, so pay attention. We're going to assume that m/n is in its most reduced form; i.e., that the value for n is the smallest it can be and still be able to represent √8. Therefore, √8n must be an integer, and n must be the smallest multiple of √8 to make this true. If you don't understand this part, read it again, because this is the heart of the proof. Now, we're going to multiply √8n by (√8 - 2). This gives 8n - 2√8n. Well, 8n is an integer, and, as we explained above, √8n is also an integer; therefore, 8n - 2√8n is an integer as well. We're going to rearrange this expression to (√8n - 2n)√8 and then set the term (√8n - 2n) equal to p, for simplicity. This gives us the expression √8p, which is equal to 8n - 2√8n, and is an integer. Remember, from above, that 0 < √8 - 2 < 1. If we multiply this inequality by n, we get 0 < √8n - 2n < n, or, from what we defined above, 0 < p < n. This means that p < n and thus √8p < √8n. We've already determined that both √8p and √8n are integers, but recall that we said n was the smallest multiple of √8 to yield an integer value. Thus, √8p < √8n is a contradiction; therefore √8 can't be rational and so must be irrational. Q.E.D.
DuckDuckGo
Is the square root of 8 a rational number? - Answers
No, it is irrational. Here is the proof: Let's start out with the basic inequality 4 < 8 < 9. Now, we'll take the square root of this inequality: 2 < √8 < 3. If you subtract all numbers by 2, you get: 0 < √8 - 2 < 1. If √8 is rational, then it can be expressed as a fraction of two integers, m/n. This next part is the only remotely tricky part of this proof, so pay attention. We're going to assume that m/n is in its most reduced form; i.e., that the value for n is the smallest it can be and still be able to represent √8. Therefore, √8n must be an integer, and n must be the smallest multiple of √8 to make this true. If you don't understand this part, read it again, because this is the heart of the proof. Now, we're going to multiply √8n by (√8 - 2). This gives 8n - 2√8n. Well, 8n is an integer, and, as we explained above, √8n is also an integer; therefore, 8n - 2√8n is an integer as well. We're going to rearrange this expression to (√8n - 2n)√8 and then set the term (√8n - 2n) equal to p, for simplicity. This gives us the expression √8p, which is equal to 8n - 2√8n, and is an integer. Remember, from above, that 0 < √8 - 2 < 1. If we multiply this inequality by n, we get 0 < √8n - 2n < n, or, from what we defined above, 0 < p < n. This means that p < n and thus √8p < √8n. We've already determined that both √8p and √8n are integers, but recall that we said n was the smallest multiple of √8 to yield an integer value. Thus, √8p < √8n is a contradiction; therefore √8 can't be rational and so must be irrational. Q.E.D.
General Meta Tags
22- titleIs the square root of 8 a rational number? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionNo, it is irrational. Here is the proof: Let's start out with the basic inequality 4 < 8 < 9. Now, we'll take the square root of this inequality: 2 < √8 < 3. If you subtract all numbers by 2, you get: 0 < √8 - 2 < 1. If √8 is rational, then it can be expressed as a fraction of two integers, m/n. This next part is the only remotely tricky part of this proof, so pay attention. We're going to assume that m/n is in its most reduced form; i.e., that the value for n is the smallest it can be and still be able to represent √8. Therefore, √8n must be an integer, and n must be the smallest multiple of √8 to make this true. If you don't understand this part, read it again, because this is the heart of the proof. Now, we're going to multiply √8n by (√8 - 2). This gives 8n - 2√8n. Well, 8n is an integer, and, as we explained above, √8n is also an integer; therefore, 8n - 2√8n is an integer as well. We're going to rearrange this expression to (√8n - 2n)√8 and then set the term (√8n - 2n) equal to p, for simplicity. This gives us the expression √8p, which is equal to 8n - 2√8n, and is an integer. Remember, from above, that 0 < √8 - 2 < 1. If we multiply this inequality by n, we get 0 < √8n - 2n < n, or, from what we defined above, 0 < p < n. This means that p < n and thus √8p < √8n. We've already determined that both √8p and √8n are integers, but recall that we said n was the smallest multiple of √8 to yield an integer value. Thus, √8p < √8n is a contradiction; therefore √8 can't be rational and so must be irrational. Q.E.D.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/basic-math/Is_the_square_root_of_8_a_rational_number
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/basic-math/Express_this_amount_in_dozens._%28Use_decimal_form.%29_7.5_cupcakes
- https://math.answers.com/basic-math/How_do_you_factor_18s-63
- https://math.answers.com/basic-math/Is_8.25_a_integer_only
- https://math.answers.com/basic-math/Is_Every_Whole_Number_a_factor_of_1_and_why