math.answers.com/basic-math/The_sum_of_two_complex_numbers_is_always_a_complex_number

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/basic-math/The_sum_of_two_complex_numbers_is_always_a_complex_number

The sum of two complex numbers is always a complex number? - Answers

A "complex number" is a number of the form a+bi, where a and b are both real numbers and i is the principal square root of -1. Since b can be equal to 0, you see that the real numbers are a subset of the complex numbers. Similarly, since a can be zero, the imaginary numbers are a subset of the complex numbers. So let's take two complex numbers: a+bi and c+di (where a, b, c, and d are real). We add them together and we get: (a+c) + (b+d)i The sum of two real numbers is always real, so a+c is a real number and b+d is a real number, so the sum of two complex numbers is a complex number. What you may really be wondering is whether the sum of two non-real complex numbers can ever be a real number. The answer is yes: (3+2i) + (5-2i) = 8. In fact, the complex numbers form an algebraic field. The sum, difference, product, and quotient of any two complex numbers (except division by 0) is a complex number (keeping in mind the special case that both real and imaginary numbers are a subset of the complex numbers).



Bing

The sum of two complex numbers is always a complex number? - Answers

https://math.answers.com/basic-math/The_sum_of_two_complex_numbers_is_always_a_complex_number

A "complex number" is a number of the form a+bi, where a and b are both real numbers and i is the principal square root of -1. Since b can be equal to 0, you see that the real numbers are a subset of the complex numbers. Similarly, since a can be zero, the imaginary numbers are a subset of the complex numbers. So let's take two complex numbers: a+bi and c+di (where a, b, c, and d are real). We add them together and we get: (a+c) + (b+d)i The sum of two real numbers is always real, so a+c is a real number and b+d is a real number, so the sum of two complex numbers is a complex number. What you may really be wondering is whether the sum of two non-real complex numbers can ever be a real number. The answer is yes: (3+2i) + (5-2i) = 8. In fact, the complex numbers form an algebraic field. The sum, difference, product, and quotient of any two complex numbers (except division by 0) is a complex number (keeping in mind the special case that both real and imaginary numbers are a subset of the complex numbers).



DuckDuckGo

https://math.answers.com/basic-math/The_sum_of_two_complex_numbers_is_always_a_complex_number

The sum of two complex numbers is always a complex number? - Answers

A "complex number" is a number of the form a+bi, where a and b are both real numbers and i is the principal square root of -1. Since b can be equal to 0, you see that the real numbers are a subset of the complex numbers. Similarly, since a can be zero, the imaginary numbers are a subset of the complex numbers. So let's take two complex numbers: a+bi and c+di (where a, b, c, and d are real). We add them together and we get: (a+c) + (b+d)i The sum of two real numbers is always real, so a+c is a real number and b+d is a real number, so the sum of two complex numbers is a complex number. What you may really be wondering is whether the sum of two non-real complex numbers can ever be a real number. The answer is yes: (3+2i) + (5-2i) = 8. In fact, the complex numbers form an algebraic field. The sum, difference, product, and quotient of any two complex numbers (except division by 0) is a complex number (keeping in mind the special case that both real and imaginary numbers are a subset of the complex numbers).

  • General Meta Tags

    22
    • title
      The sum of two complex numbers is always a complex number? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      A "complex number" is a number of the form a+bi, where a and b are both real numbers and i is the principal square root of -1. Since b can be equal to 0, you see that the real numbers are a subset of the complex numbers. Similarly, since a can be zero, the imaginary numbers are a subset of the complex numbers. So let's take two complex numbers: a+bi and c+di (where a, b, c, and d are real). We add them together and we get: (a+c) + (b+d)i The sum of two real numbers is always real, so a+c is a real number and b+d is a real number, so the sum of two complex numbers is a complex number. What you may really be wondering is whether the sum of two non-real complex numbers can ever be a real number. The answer is yes: (3+2i) + (5-2i) = 8. In fact, the complex numbers form an algebraic field. The sum, difference, product, and quotient of any two complex numbers (except division by 0) is a complex number (keeping in mind the special case that both real and imaginary numbers are a subset of the complex numbers).
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/basic-math/The_sum_of_two_complex_numbers_is_always_a_complex_number
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58