math.answers.com/calculus/Integration_of_tangent_cubed_of_x
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 32 links tomath.answers.com
- 20 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Integration of tangent cubed of x? - Answers
Find I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.
Bing
Integration of tangent cubed of x? - Answers
Find I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.
DuckDuckGo
Integration of tangent cubed of x? - Answers
Find I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.
General Meta Tags
22- titleIntegration of tangent cubed of x? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionFind I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/calculus/Integration_of_tangent_cubed_of_x
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/calculus/A_right_angle_contains_degree
- https://math.answers.com/calculus/How_do_you_convert_40.32_degrees_to_a_decimal_in_degrees
- https://math.answers.com/calculus/How_do_you_write_in_interval_notation_x_is_positive
- https://math.answers.com/calculus/How_does_one_solve_the_differential_equation_dy_over_dx_equals_x_plus_y