math.answers.com/calculus/Integration_of_tangent_cubed_of_x

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/calculus/Integration_of_tangent_cubed_of_x

Integration of tangent cubed of x? - Answers

Find I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.



Bing

Integration of tangent cubed of x? - Answers

https://math.answers.com/calculus/Integration_of_tangent_cubed_of_x

Find I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.



DuckDuckGo

https://math.answers.com/calculus/Integration_of_tangent_cubed_of_x

Integration of tangent cubed of x? - Answers

Find I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.

  • General Meta Tags

    22
    • title
      Integration of tangent cubed of x? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Find I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/calculus/Integration_of_tangent_cubed_of_x
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58