math.answers.com/geometry/How_do_you_find_the_side_length_of_a_triangle

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/geometry/How_do_you_find_the_side_length_of_a_triangle

How do you find the side length of a triangle? - Answers

The most popular triangle used in construction, engineering and mathematics is the right triangle, which has a 90o angle at the base. We'll call your base "x", height "y" and diagonal (hypotenuse) "r".You can find these values using your calculator's trigonometric functions, or you can use the Pythagorean Theorem.Finding Values (Pythagorean Theorem):The Pythagorean Theorem is straightforward and states that, for a right triangle, r^2 = x^2 + y^2. We can use a little bit of algebra to find x, y and r.r = sqrt(x^2 + y^2)r^2 = x^2 + y^2r = sqrt(x^2 + y^2); remove the ^2 from rx = sqrt(r^2 - y^2)r^2 = x^2 + y^2r^2 - y^2 = x^2; move y^2 to the left side of the equationsqrt(r^2 - y^2) = x; remove the ^2 from xy = sqrt(r^2 - x^2)r^2 = x^2 + y^2r^2 - x^2 = y^2; move x^2 to the left side of the equationsqrt(r^2 - x^2) = y; remove the ^2 from yFinding Values (Trigonometric Functions):Acquiring Ratios:cos(angle) = x/rsin(angle) = y/rtan(angle) = y/xAcquiring Angles:cos-1(x/r) = anglesin-1(y/r) = angletan-1(y/x) = angleThat looks confusing. What are cos, sin, tan, etc?They're functions. You give a function input and it outputs something else. How they do this is complicated and required calculus.x = cos(angle) * rcos(angle) = x/rcos(angle) * r = x; move r to the left side of the equationy = sin(angle) * rsin(angle) = y/rsin(angle) * r = y; move r to the left side of the equationx = 1 / (tan(angle)/y)tan(angle) = y/xtan(angle) / y = 1/x; move y to the left side of the equation1 / (tan(angle) / y) = x; flip the equationy = tan(angle) * xtan(angle) = y/xtan(angle) * x = y; move x to the left side of the equationr = 1 / (cos(angle)/x)cos(angle) = x/rcos(angle) / x = 1/r; move x to the left side of the equation1 / (cos(angle)/x) = r; flip the equationr = 1 / (sin(angle)/y)sin(angle) = y/rsin(angle) / y = 1/r; move y to the left side of the equation1 / (sin(angle)/y) = r; flip the equation



Bing

How do you find the side length of a triangle? - Answers

https://math.answers.com/geometry/How_do_you_find_the_side_length_of_a_triangle

The most popular triangle used in construction, engineering and mathematics is the right triangle, which has a 90o angle at the base. We'll call your base "x", height "y" and diagonal (hypotenuse) "r".You can find these values using your calculator's trigonometric functions, or you can use the Pythagorean Theorem.Finding Values (Pythagorean Theorem):The Pythagorean Theorem is straightforward and states that, for a right triangle, r^2 = x^2 + y^2. We can use a little bit of algebra to find x, y and r.r = sqrt(x^2 + y^2)r^2 = x^2 + y^2r = sqrt(x^2 + y^2); remove the ^2 from rx = sqrt(r^2 - y^2)r^2 = x^2 + y^2r^2 - y^2 = x^2; move y^2 to the left side of the equationsqrt(r^2 - y^2) = x; remove the ^2 from xy = sqrt(r^2 - x^2)r^2 = x^2 + y^2r^2 - x^2 = y^2; move x^2 to the left side of the equationsqrt(r^2 - x^2) = y; remove the ^2 from yFinding Values (Trigonometric Functions):Acquiring Ratios:cos(angle) = x/rsin(angle) = y/rtan(angle) = y/xAcquiring Angles:cos-1(x/r) = anglesin-1(y/r) = angletan-1(y/x) = angleThat looks confusing. What are cos, sin, tan, etc?They're functions. You give a function input and it outputs something else. How they do this is complicated and required calculus.x = cos(angle) * rcos(angle) = x/rcos(angle) * r = x; move r to the left side of the equationy = sin(angle) * rsin(angle) = y/rsin(angle) * r = y; move r to the left side of the equationx = 1 / (tan(angle)/y)tan(angle) = y/xtan(angle) / y = 1/x; move y to the left side of the equation1 / (tan(angle) / y) = x; flip the equationy = tan(angle) * xtan(angle) = y/xtan(angle) * x = y; move x to the left side of the equationr = 1 / (cos(angle)/x)cos(angle) = x/rcos(angle) / x = 1/r; move x to the left side of the equation1 / (cos(angle)/x) = r; flip the equationr = 1 / (sin(angle)/y)sin(angle) = y/rsin(angle) / y = 1/r; move y to the left side of the equation1 / (sin(angle)/y) = r; flip the equation



DuckDuckGo

https://math.answers.com/geometry/How_do_you_find_the_side_length_of_a_triangle

How do you find the side length of a triangle? - Answers

The most popular triangle used in construction, engineering and mathematics is the right triangle, which has a 90o angle at the base. We'll call your base "x", height "y" and diagonal (hypotenuse) "r".You can find these values using your calculator's trigonometric functions, or you can use the Pythagorean Theorem.Finding Values (Pythagorean Theorem):The Pythagorean Theorem is straightforward and states that, for a right triangle, r^2 = x^2 + y^2. We can use a little bit of algebra to find x, y and r.r = sqrt(x^2 + y^2)r^2 = x^2 + y^2r = sqrt(x^2 + y^2); remove the ^2 from rx = sqrt(r^2 - y^2)r^2 = x^2 + y^2r^2 - y^2 = x^2; move y^2 to the left side of the equationsqrt(r^2 - y^2) = x; remove the ^2 from xy = sqrt(r^2 - x^2)r^2 = x^2 + y^2r^2 - x^2 = y^2; move x^2 to the left side of the equationsqrt(r^2 - x^2) = y; remove the ^2 from yFinding Values (Trigonometric Functions):Acquiring Ratios:cos(angle) = x/rsin(angle) = y/rtan(angle) = y/xAcquiring Angles:cos-1(x/r) = anglesin-1(y/r) = angletan-1(y/x) = angleThat looks confusing. What are cos, sin, tan, etc?They're functions. You give a function input and it outputs something else. How they do this is complicated and required calculus.x = cos(angle) * rcos(angle) = x/rcos(angle) * r = x; move r to the left side of the equationy = sin(angle) * rsin(angle) = y/rsin(angle) * r = y; move r to the left side of the equationx = 1 / (tan(angle)/y)tan(angle) = y/xtan(angle) / y = 1/x; move y to the left side of the equation1 / (tan(angle) / y) = x; flip the equationy = tan(angle) * xtan(angle) = y/xtan(angle) * x = y; move x to the left side of the equationr = 1 / (cos(angle)/x)cos(angle) = x/rcos(angle) / x = 1/r; move x to the left side of the equation1 / (cos(angle)/x) = r; flip the equationr = 1 / (sin(angle)/y)sin(angle) = y/rsin(angle) / y = 1/r; move y to the left side of the equation1 / (sin(angle)/y) = r; flip the equation

  • General Meta Tags

    22
    • title
      How do you find the side length of a triangle? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      The most popular triangle used in construction, engineering and mathematics is the right triangle, which has a 90o angle at the base. We'll call your base "x", height "y" and diagonal (hypotenuse) "r".You can find these values using your calculator's trigonometric functions, or you can use the Pythagorean Theorem.Finding Values (Pythagorean Theorem):The Pythagorean Theorem is straightforward and states that, for a right triangle, r^2 = x^2 + y^2. We can use a little bit of algebra to find x, y and r.r = sqrt(x^2 + y^2)r^2 = x^2 + y^2r = sqrt(x^2 + y^2); remove the ^2 from rx = sqrt(r^2 - y^2)r^2 = x^2 + y^2r^2 - y^2 = x^2; move y^2 to the left side of the equationsqrt(r^2 - y^2) = x; remove the ^2 from xy = sqrt(r^2 - x^2)r^2 = x^2 + y^2r^2 - x^2 = y^2; move x^2 to the left side of the equationsqrt(r^2 - x^2) = y; remove the ^2 from yFinding Values (Trigonometric Functions):Acquiring Ratios:cos(angle) = x/rsin(angle) = y/rtan(angle) = y/xAcquiring Angles:cos-1(x/r) = anglesin-1(y/r) = angletan-1(y/x) = angleThat looks confusing. What are cos, sin, tan, etc?They're functions. You give a function input and it outputs something else. How they do this is complicated and required calculus.x = cos(angle) * rcos(angle) = x/rcos(angle) * r = x; move r to the left side of the equationy = sin(angle) * rsin(angle) = y/rsin(angle) * r = y; move r to the left side of the equationx = 1 / (tan(angle)/y)tan(angle) = y/xtan(angle) / y = 1/x; move y to the left side of the equation1 / (tan(angle) / y) = x; flip the equationy = tan(angle) * xtan(angle) = y/xtan(angle) * x = y; move x to the left side of the equationr = 1 / (cos(angle)/x)cos(angle) = x/rcos(angle) / x = 1/r; move x to the left side of the equation1 / (cos(angle)/x) = r; flip the equationr = 1 / (sin(angle)/y)sin(angle) = y/rsin(angle) / y = 1/r; move y to the left side of the equation1 / (sin(angle)/y) = r; flip the equation
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/geometry/How_do_you_find_the_side_length_of_a_triangle
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58