math.answers.com/math-and-arithmetic/How_do_you_convert_-2(x_1)(x-3)_to_general_form
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 35 links tomath.answers.com
- 17 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you convert -2(x 1)(x-3) to general form? - Answers
To convert (-2(x + 1)(x - 3)) to general form, first expand the expression by using the distributive property. Multiply (-2) by each term in the binomials: [ -2[(x)(x) + (x)(-3) + (1)(x) + (1)(-3)] = -2[x^2 - 3x + x - 3] ] This simplifies to: [ -2[x^2 - 2x - 3] = -2x^2 + 4x + 6 ] Thus, the general form is (-2x^2 + 4x + 6).
Bing
How do you convert -2(x 1)(x-3) to general form? - Answers
To convert (-2(x + 1)(x - 3)) to general form, first expand the expression by using the distributive property. Multiply (-2) by each term in the binomials: [ -2[(x)(x) + (x)(-3) + (1)(x) + (1)(-3)] = -2[x^2 - 3x + x - 3] ] This simplifies to: [ -2[x^2 - 2x - 3] = -2x^2 + 4x + 6 ] Thus, the general form is (-2x^2 + 4x + 6).
DuckDuckGo
How do you convert -2(x 1)(x-3) to general form? - Answers
To convert (-2(x + 1)(x - 3)) to general form, first expand the expression by using the distributive property. Multiply (-2) by each term in the binomials: [ -2[(x)(x) + (x)(-3) + (1)(x) + (1)(-3)] = -2[x^2 - 3x + x - 3] ] This simplifies to: [ -2[x^2 - 2x - 3] = -2x^2 + 4x + 6 ] Thus, the general form is (-2x^2 + 4x + 6).
General Meta Tags
22- titleHow do you convert -2(x 1)(x-3) to general form? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo convert (-2(x + 1)(x - 3)) to general form, first expand the expression by using the distributive property. Multiply (-2) by each term in the binomials: [ -2[(x)(x) + (x)(-3) + (1)(x) + (1)(-3)] = -2[x^2 - 3x + x - 3] ] This simplifies to: [ -2[x^2 - 2x - 3] = -2x^2 + 4x + 6 ] Thus, the general form is (-2x^2 + 4x + 6).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_convert_-2%28x_1%29%28x-3%29_to_general_form
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/5_ml_equals_kg
- https://math.answers.com/math-and-arithmetic/Can_a_just_13yrs_old_at_5%276_reach_5%279
- https://math.answers.com/math-and-arithmetic/Colonial_organisms_probably_evolved_into
- https://math.answers.com/math-and-arithmetic/Have_no_means_to_interpret_the_data_they_retransmit