math.answers.com/math-and-arithmetic/How_do_you_convert_-2(x_1)(x-3)_to_general_form

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_do_you_convert_-2(x_1)(x-3)_to_general_form

How do you convert -2(x 1)(x-3) to general form? - Answers

To convert (-2(x + 1)(x - 3)) to general form, first expand the expression by using the distributive property. Multiply (-2) by each term in the binomials: [ -2[(x)(x) + (x)(-3) + (1)(x) + (1)(-3)] = -2[x^2 - 3x + x - 3] ] This simplifies to: [ -2[x^2 - 2x - 3] = -2x^2 + 4x + 6 ] Thus, the general form is (-2x^2 + 4x + 6).



Bing

How do you convert -2(x 1)(x-3) to general form? - Answers

https://math.answers.com/math-and-arithmetic/How_do_you_convert_-2(x_1)(x-3)_to_general_form

To convert (-2(x + 1)(x - 3)) to general form, first expand the expression by using the distributive property. Multiply (-2) by each term in the binomials: [ -2[(x)(x) + (x)(-3) + (1)(x) + (1)(-3)] = -2[x^2 - 3x + x - 3] ] This simplifies to: [ -2[x^2 - 2x - 3] = -2x^2 + 4x + 6 ] Thus, the general form is (-2x^2 + 4x + 6).



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_do_you_convert_-2(x_1)(x-3)_to_general_form

How do you convert -2(x 1)(x-3) to general form? - Answers

To convert (-2(x + 1)(x - 3)) to general form, first expand the expression by using the distributive property. Multiply (-2) by each term in the binomials: [ -2[(x)(x) + (x)(-3) + (1)(x) + (1)(-3)] = -2[x^2 - 3x + x - 3] ] This simplifies to: [ -2[x^2 - 2x - 3] = -2x^2 + 4x + 6 ] Thus, the general form is (-2x^2 + 4x + 6).

  • General Meta Tags

    22
    • title
      How do you convert -2(x 1)(x-3) to general form? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      To convert (-2(x + 1)(x - 3)) to general form, first expand the expression by using the distributive property. Multiply (-2) by each term in the binomials: [ -2[(x)(x) + (x)(-3) + (1)(x) + (1)(-3)] = -2[x^2 - 3x + x - 3] ] This simplifies to: [ -2[x^2 - 2x - 3] = -2x^2 + 4x + 6 ] Thus, the general form is (-2x^2 + 4x + 6).
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_do_you_convert_-2%28x_1%29%28x-3%29_to_general_form
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58