math.answers.com/math-and-arithmetic/How_do_you_solve_10C3
Preview meta tags from the math.answers.com website.
Linked Hostnames
9- 33 links tomath.answers.com
- 18 links towww.answers.com
- 1 link toqa.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
Thumbnail

Search Engine Appearance
How do you solve 10C3? - Answers
To solve ( 10C3 ), which represents the number of combinations of 10 items taken 3 at a time, you use the formula: [ nCr = \frac{n!}{r!(n-r)!} ] For ( 10C3 ), this becomes: [ 10C3 = \frac{10!}{3!(10-3)!} = \frac{10!}{3! \cdot 7!} ] Calculating this gives: [ = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = \frac{720}{6} = 120 ] Thus, ( 10C3 = 120 ).
Bing
How do you solve 10C3? - Answers
To solve ( 10C3 ), which represents the number of combinations of 10 items taken 3 at a time, you use the formula: [ nCr = \frac{n!}{r!(n-r)!} ] For ( 10C3 ), this becomes: [ 10C3 = \frac{10!}{3!(10-3)!} = \frac{10!}{3! \cdot 7!} ] Calculating this gives: [ = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = \frac{720}{6} = 120 ] Thus, ( 10C3 = 120 ).
DuckDuckGo
How do you solve 10C3? - Answers
To solve ( 10C3 ), which represents the number of combinations of 10 items taken 3 at a time, you use the formula: [ nCr = \frac{n!}{r!(n-r)!} ] For ( 10C3 ), this becomes: [ 10C3 = \frac{10!}{3!(10-3)!} = \frac{10!}{3! \cdot 7!} ] Calculating this gives: [ = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = \frac{720}{6} = 120 ] Thus, ( 10C3 = 120 ).
General Meta Tags
22- titleHow do you solve 10C3? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo solve ( 10C3 ), which represents the number of combinations of 10 items taken 3 at a time, you use the formula: [ nCr = \frac{n!}{r!(n-r)!} ] For ( 10C3 ), this becomes: [ 10C3 = \frac{10!}{3!(10-3)!} = \frac{10!}{3! \cdot 7!} ] Calculating this gives: [ = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = \frac{720}{6} = 120 ] Thus, ( 10C3 = 120 ).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_solve_10C3
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/216.535_inches_to_feet
- https://math.answers.com/math-and-arithmetic/A_DVD_storage_sleeve_has_a_shape_of_a_square_with_an_edge_length_of_5_inches_what_is_the_area_of_the_front_of_the_sleeve
- https://math.answers.com/math-and-arithmetic/Are_two_triangles_congruent_if_they_have_same_area
- https://math.answers.com/math-and-arithmetic/Does_one_inch_represent_the_same_distance_on_each_map