math.answers.com/math-and-arithmetic/How_many_cube_roots_does_1_have

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_many_cube_roots_does_1_have

How many cube roots does 1 have? - Answers

The number 1 has three distinct cube roots in the complex number system. These roots are 1, (-\frac{1}{2} + \frac{\sqrt{3}}{2}i), and (-\frac{1}{2} - \frac{\sqrt{3}}{2}i). In polar form, these roots can be represented as (1), (1 \text{cis} \frac{2\pi}{3}), and (1 \text{cis} \frac{4\pi}{3}), where "cis" is shorthand for (\cos + i\sin).



Bing

How many cube roots does 1 have? - Answers

https://math.answers.com/math-and-arithmetic/How_many_cube_roots_does_1_have

The number 1 has three distinct cube roots in the complex number system. These roots are 1, (-\frac{1}{2} + \frac{\sqrt{3}}{2}i), and (-\frac{1}{2} - \frac{\sqrt{3}}{2}i). In polar form, these roots can be represented as (1), (1 \text{cis} \frac{2\pi}{3}), and (1 \text{cis} \frac{4\pi}{3}), where "cis" is shorthand for (\cos + i\sin).



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_many_cube_roots_does_1_have

How many cube roots does 1 have? - Answers

The number 1 has three distinct cube roots in the complex number system. These roots are 1, (-\frac{1}{2} + \frac{\sqrt{3}}{2}i), and (-\frac{1}{2} - \frac{\sqrt{3}}{2}i). In polar form, these roots can be represented as (1), (1 \text{cis} \frac{2\pi}{3}), and (1 \text{cis} \frac{4\pi}{3}), where "cis" is shorthand for (\cos + i\sin).

  • General Meta Tags

    22
    • title
      How many cube roots does 1 have? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      The number 1 has three distinct cube roots in the complex number system. These roots are 1, (-\frac{1}{2} + \frac{\sqrt{3}}{2}i), and (-\frac{1}{2} - \frac{\sqrt{3}}{2}i). In polar form, these roots can be represented as (1), (1 \text{cis} \frac{2\pi}{3}), and (1 \text{cis} \frac{4\pi}{3}), where "cis" is shorthand for (\cos + i\sin).
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_many_cube_roots_does_1_have
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58