math.answers.com/math-and-arithmetic/How_many_cube_roots_does_1_have
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How many cube roots does 1 have? - Answers
The number 1 has three distinct cube roots in the complex number system. These roots are 1, (-\frac{1}{2} + \frac{\sqrt{3}}{2}i), and (-\frac{1}{2} - \frac{\sqrt{3}}{2}i). In polar form, these roots can be represented as (1), (1 \text{cis} \frac{2\pi}{3}), and (1 \text{cis} \frac{4\pi}{3}), where "cis" is shorthand for (\cos + i\sin).
Bing
How many cube roots does 1 have? - Answers
The number 1 has three distinct cube roots in the complex number system. These roots are 1, (-\frac{1}{2} + \frac{\sqrt{3}}{2}i), and (-\frac{1}{2} - \frac{\sqrt{3}}{2}i). In polar form, these roots can be represented as (1), (1 \text{cis} \frac{2\pi}{3}), and (1 \text{cis} \frac{4\pi}{3}), where "cis" is shorthand for (\cos + i\sin).
DuckDuckGo
How many cube roots does 1 have? - Answers
The number 1 has three distinct cube roots in the complex number system. These roots are 1, (-\frac{1}{2} + \frac{\sqrt{3}}{2}i), and (-\frac{1}{2} - \frac{\sqrt{3}}{2}i). In polar form, these roots can be represented as (1), (1 \text{cis} \frac{2\pi}{3}), and (1 \text{cis} \frac{4\pi}{3}), where "cis" is shorthand for (\cos + i\sin).
General Meta Tags
22- titleHow many cube roots does 1 have? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe number 1 has three distinct cube roots in the complex number system. These roots are 1, (-\frac{1}{2} + \frac{\sqrt{3}}{2}i), and (-\frac{1}{2} - \frac{\sqrt{3}}{2}i). In polar form, these roots can be represented as (1), (1 \text{cis} \frac{2\pi}{3}), and (1 \text{cis} \frac{4\pi}{3}), where "cis" is shorthand for (\cos + i\sin).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_many_cube_roots_does_1_have
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/A_shape_with_4_pairs_of_parallel_lines
- https://math.answers.com/math-and-arithmetic/Are_15_and_21_relatively_prime
- https://math.answers.com/math-and-arithmetic/Compare_and_contrast_the_history_of_the_roman_system_to_the_Hindu_Arabic_system
- https://math.answers.com/math-and-arithmetic/How_do_you_convert_8_over_110_into_a_percent