math.answers.com/math-and-arithmetic/How_many_intersects_are_there_for_4_lines
Preview meta tags from the math.answers.com website.
Linked Hostnames
9- 31 links tomath.answers.com
- 20 links towww.answers.com
- 1 link toqa.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
Thumbnail

Search Engine Appearance
How many intersects are there for 4 lines? - Answers
Maximum 12 intersections are there! You can simply use the formula: No. of intersections = n(n-1)/2 [where 'n' is the number of lines] This is derived as each new line can intersect (at most) all the previously drawn lines. There if there is: 1 line => 0 intersections 2 lines => 1 intersection 3 lines => 3 intersections [1 that was there + 2 by the new line can intersect both the previous lines.] 4 lines => 6 intersections [3 that were already there + 3 because the new line can intersect all the 3 lines that were present previously.]
Bing
How many intersects are there for 4 lines? - Answers
Maximum 12 intersections are there! You can simply use the formula: No. of intersections = n(n-1)/2 [where 'n' is the number of lines] This is derived as each new line can intersect (at most) all the previously drawn lines. There if there is: 1 line => 0 intersections 2 lines => 1 intersection 3 lines => 3 intersections [1 that was there + 2 by the new line can intersect both the previous lines.] 4 lines => 6 intersections [3 that were already there + 3 because the new line can intersect all the 3 lines that were present previously.]
DuckDuckGo
How many intersects are there for 4 lines? - Answers
Maximum 12 intersections are there! You can simply use the formula: No. of intersections = n(n-1)/2 [where 'n' is the number of lines] This is derived as each new line can intersect (at most) all the previously drawn lines. There if there is: 1 line => 0 intersections 2 lines => 1 intersection 3 lines => 3 intersections [1 that was there + 2 by the new line can intersect both the previous lines.] 4 lines => 6 intersections [3 that were already there + 3 because the new line can intersect all the 3 lines that were present previously.]
General Meta Tags
22- titleHow many intersects are there for 4 lines? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionMaximum 12 intersections are there! You can simply use the formula: No. of intersections = n(n-1)/2 [where 'n' is the number of lines] This is derived as each new line can intersect (at most) all the previously drawn lines. There if there is: 1 line => 0 intersections 2 lines => 1 intersection 3 lines => 3 intersections [1 that was there + 2 by the new line can intersect both the previous lines.] 4 lines => 6 intersections [3 that were already there + 3 because the new line can intersect all the 3 lines that were present previously.]
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_many_intersects_are_there_for_4_lines
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Can_a_million_dollars_fit_in_a_duffel_bag
- https://math.answers.com/math-and-arithmetic/How_Do_you_make_a_cross_section_of_a_parallelogram_from_a_pyramid
- https://math.answers.com/math-and-arithmetic/How_can_you_round_62.34_to_the_nearest_tenth
- https://math.answers.com/math-and-arithmetic/How_do_you_log_into_g_mail