math.answers.com/math-and-arithmetic/How_many_sides_does_a_3240_degree_polygon_have

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_many_sides_does_a_3240_degree_polygon_have

How many sides does a 3240 degree polygon have? - Answers

To find the number of sides in a polygon based on its degree measure, you can use the formula that relates the interior angle sum to the number of sides: the sum of the interior angles of an n-sided polygon is given by ( (n-2) \times 180 ) degrees. For a polygon with a total interior angle measure of 3240 degrees, you set up the equation: ( (n-2) \times 180 = 3240 ). Solving for n gives ( n = 20 ). Therefore, a polygon with a total interior angle measure of 3240 degrees has 20 sides.



Bing

How many sides does a 3240 degree polygon have? - Answers

https://math.answers.com/math-and-arithmetic/How_many_sides_does_a_3240_degree_polygon_have

To find the number of sides in a polygon based on its degree measure, you can use the formula that relates the interior angle sum to the number of sides: the sum of the interior angles of an n-sided polygon is given by ( (n-2) \times 180 ) degrees. For a polygon with a total interior angle measure of 3240 degrees, you set up the equation: ( (n-2) \times 180 = 3240 ). Solving for n gives ( n = 20 ). Therefore, a polygon with a total interior angle measure of 3240 degrees has 20 sides.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_many_sides_does_a_3240_degree_polygon_have

How many sides does a 3240 degree polygon have? - Answers

To find the number of sides in a polygon based on its degree measure, you can use the formula that relates the interior angle sum to the number of sides: the sum of the interior angles of an n-sided polygon is given by ( (n-2) \times 180 ) degrees. For a polygon with a total interior angle measure of 3240 degrees, you set up the equation: ( (n-2) \times 180 = 3240 ). Solving for n gives ( n = 20 ). Therefore, a polygon with a total interior angle measure of 3240 degrees has 20 sides.

  • General Meta Tags

    22
    • title
      How many sides does a 3240 degree polygon have? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      To find the number of sides in a polygon based on its degree measure, you can use the formula that relates the interior angle sum to the number of sides: the sum of the interior angles of an n-sided polygon is given by ( (n-2) \times 180 ) degrees. For a polygon with a total interior angle measure of 3240 degrees, you set up the equation: ( (n-2) \times 180 = 3240 ). Solving for n gives ( n = 20 ). Therefore, a polygon with a total interior angle measure of 3240 degrees has 20 sides.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_many_sides_does_a_3240_degree_polygon_have
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58