math.answers.com/math-and-arithmetic/Is_The_composition_of_an_odd_function_and_an_odd_function_even

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/Is_The_composition_of_an_odd_function_and_an_odd_function_even

Is The composition of an odd function and an odd function even? - Answers

The composition of two odd functions is an even function. If ( f(x) ) and ( g(x) ) are both odd, then for their composition ( (f \circ g)(x) = f(g(x)) ), we have ( (f \circ g)(-x) = f(g(-x)) = f(-g(x)) = -f(g(x)) = -(f \circ g)(x) ). Thus, ( (f \circ g)(x) ) satisfies the definition of an even function.



Bing

Is The composition of an odd function and an odd function even? - Answers

https://math.answers.com/math-and-arithmetic/Is_The_composition_of_an_odd_function_and_an_odd_function_even

The composition of two odd functions is an even function. If ( f(x) ) and ( g(x) ) are both odd, then for their composition ( (f \circ g)(x) = f(g(x)) ), we have ( (f \circ g)(-x) = f(g(-x)) = f(-g(x)) = -f(g(x)) = -(f \circ g)(x) ). Thus, ( (f \circ g)(x) ) satisfies the definition of an even function.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/Is_The_composition_of_an_odd_function_and_an_odd_function_even

Is The composition of an odd function and an odd function even? - Answers

The composition of two odd functions is an even function. If ( f(x) ) and ( g(x) ) are both odd, then for their composition ( (f \circ g)(x) = f(g(x)) ), we have ( (f \circ g)(-x) = f(g(-x)) = f(-g(x)) = -f(g(x)) = -(f \circ g)(x) ). Thus, ( (f \circ g)(x) ) satisfies the definition of an even function.

  • General Meta Tags

    22
    • title
      Is The composition of an odd function and an odd function even? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      The composition of two odd functions is an even function. If ( f(x) ) and ( g(x) ) are both odd, then for their composition ( (f \circ g)(x) = f(g(x)) ), we have ( (f \circ g)(-x) = f(g(-x)) = f(-g(x)) = -f(g(x)) = -(f \circ g)(x) ). Thus, ( (f \circ g)(x) ) satisfies the definition of an even function.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/Is_The_composition_of_an_odd_function_and_an_odd_function_even
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58