math.answers.com/math-and-arithmetic/Is_the_intersection_of_two_infinite_intervals_always_infinite
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Is the intersection of two infinite intervals always infinite? - Answers
No. Say for example interval A is (-inf, 0), and interval B is (0, inf). Even though they are both infinite, their intersection is the empty set (i.e. they have nothing in common). The same applies to sets. That being said, it is entirely possible for two infinite intervals' intersection to be infinite. All that is required is that one is a subset of the other (one set contains all of the other set, for example A = (0, inf) and B = (1, inf). Here, A contains all of B, and therefore, their intersection is B. This means that their intersection is infinite.)
Bing
Is the intersection of two infinite intervals always infinite? - Answers
No. Say for example interval A is (-inf, 0), and interval B is (0, inf). Even though they are both infinite, their intersection is the empty set (i.e. they have nothing in common). The same applies to sets. That being said, it is entirely possible for two infinite intervals' intersection to be infinite. All that is required is that one is a subset of the other (one set contains all of the other set, for example A = (0, inf) and B = (1, inf). Here, A contains all of B, and therefore, their intersection is B. This means that their intersection is infinite.)
DuckDuckGo
Is the intersection of two infinite intervals always infinite? - Answers
No. Say for example interval A is (-inf, 0), and interval B is (0, inf). Even though they are both infinite, their intersection is the empty set (i.e. they have nothing in common). The same applies to sets. That being said, it is entirely possible for two infinite intervals' intersection to be infinite. All that is required is that one is a subset of the other (one set contains all of the other set, for example A = (0, inf) and B = (1, inf). Here, A contains all of B, and therefore, their intersection is B. This means that their intersection is infinite.)
General Meta Tags
22- titleIs the intersection of two infinite intervals always infinite? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionNo. Say for example interval A is (-inf, 0), and interval B is (0, inf). Even though they are both infinite, their intersection is the empty set (i.e. they have nothing in common). The same applies to sets. That being said, it is entirely possible for two infinite intervals' intersection to be infinite. All that is required is that one is a subset of the other (one set contains all of the other set, for example A = (0, inf) and B = (1, inf). Here, A contains all of B, and therefore, their intersection is B. This means that their intersection is infinite.)
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Is_the_intersection_of_two_infinite_intervals_always_infinite
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/A_whole_numbers_consists_of_the_digits_2468_and_0_if_each_digit_is_used_only_once_how_many_whole_number_are_possible
- https://math.answers.com/math-and-arithmetic/How_do_you_activate_the_4_x_4
- https://math.answers.com/math-and-arithmetic/How_do_you_write_28_in_roman_numerals
- https://math.answers.com/math-and-arithmetic/How_do_you_write_5_and_2_5th_as_a_percent