math.answers.com/math-and-arithmetic/Is_the_set_of_integers_is_close_under_subtraction
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Is the set of integers is close under subtraction? - Answers
Yes, because suppose that 'a' and 'b' are both arbitrary integers. Then (a-b) or (b-a) will then provide you with another integer. Suppose that the integer you are given from (a-b) is not unique. Then we have: (a-b)=c and (a-b)=c' Then, trivially, since (a-b)=(a-b), we have c=c'. Thus it is closed under subtraction.
Bing
Is the set of integers is close under subtraction? - Answers
Yes, because suppose that 'a' and 'b' are both arbitrary integers. Then (a-b) or (b-a) will then provide you with another integer. Suppose that the integer you are given from (a-b) is not unique. Then we have: (a-b)=c and (a-b)=c' Then, trivially, since (a-b)=(a-b), we have c=c'. Thus it is closed under subtraction.
DuckDuckGo
Is the set of integers is close under subtraction? - Answers
Yes, because suppose that 'a' and 'b' are both arbitrary integers. Then (a-b) or (b-a) will then provide you with another integer. Suppose that the integer you are given from (a-b) is not unique. Then we have: (a-b)=c and (a-b)=c' Then, trivially, since (a-b)=(a-b), we have c=c'. Thus it is closed under subtraction.
General Meta Tags
22- titleIs the set of integers is close under subtraction? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionYes, because suppose that 'a' and 'b' are both arbitrary integers. Then (a-b) or (b-a) will then provide you with another integer. Suppose that the integer you are given from (a-b) is not unique. Then we have: (a-b)=c and (a-b)=c' Then, trivially, since (a-b)=(a-b), we have c=c'. Thus it is closed under subtraction.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Is_the_set_of_integers_is_close_under_subtraction
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Express_200000000002_in_scientific_notation
- https://math.answers.com/math-and-arithmetic/How_do_you_write_8_hours_and_20_minutes_in_decimals
- https://math.answers.com/math-and-arithmetic/How_is_29_the_prime_number_between_25_and_30
- https://math.answers.com/math-and-arithmetic/How_many_times_may_an_applicant_take_the_Licensure_Exam_without_repeating_an_accredited_PTA_program