math.answers.com/other-math/How_do_you_add_subtract_multiply_and_divide_using_scientific_notation
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you add subtract multiply and divide using scientific notation? - Answers
When dealing with numbers in scientific notation the mantissa (number with the decimal point) and the exponent (the × 10^n bit) are processed separately: To add and subtract: the exponents (powers of 10) MUST be the same: 1) If the exponents are different, adjust the number with the greater power so that the exponents are the same; 2) add/subtract the numbers like normal decimals (with the decimal points aligned), keeping the exponent; 3) Adjust the result back to proper scientific notation if necessary. eg: 1.23 × 10^4 + 2.34 × 10^3 Adjust the 1.23 × 10^4 → 12.3 × 10^3 → 1.23 × 10^4 + 2.34 × 10^3 = 12.3 × 10^3 + 2.34 × 10^3 = (12.3 + 2.34) × 10^3 = 14.64 × 10^3 = 1.464 × 10^4 eg 9.83 × 10^4 + 2.7 × 10^3 = 98.3 × 10^3 + 2.7 × 10^3 = (98.3 + 2.7) × 10^3 = 101 × 10^3 = 1.03 × 10^5 eg 1.05 × 10^4 - 2.7 × 10^3 = 10.5 × 10^3 - 2.7 × 10^3 = (10.5 - 2.7) × 10^3 = 7.8 × 10^3 To multiply and divide: 1) multiply/divide the mantissas; 2) add/subtract the powers in the exponents; 3) Adjust the result back to proper scientific notation if necessary. eg 1.23 × 10^4 × 2.34 × 10^3 = (1.23 × 2.34) × 10^(4 + 3) = 2.8782 × 10^7 eg 9.83 × 10^4 × 2.7 × 10^-3 = (9.83 × 2.7) × 10^(4 + -3) = 26.541 × 10^1 = 2.6541 × 10^2 eg 1.05 × 10^5 ÷ 2.3 × 10^3 = (1.05 ÷ 2.3) × 10^(5 - 3) ≈ 0.4565 × 10^2 = 4.565 × 10^1 eg 1.155 × 10^5 ÷ 2.1 × 10^-3 = (1.155 ÷ 2.1) × 10^(5 - -3) = 0.55 × 10^8 = 5.5 × 10^7
Bing
How do you add subtract multiply and divide using scientific notation? - Answers
When dealing with numbers in scientific notation the mantissa (number with the decimal point) and the exponent (the × 10^n bit) are processed separately: To add and subtract: the exponents (powers of 10) MUST be the same: 1) If the exponents are different, adjust the number with the greater power so that the exponents are the same; 2) add/subtract the numbers like normal decimals (with the decimal points aligned), keeping the exponent; 3) Adjust the result back to proper scientific notation if necessary. eg: 1.23 × 10^4 + 2.34 × 10^3 Adjust the 1.23 × 10^4 → 12.3 × 10^3 → 1.23 × 10^4 + 2.34 × 10^3 = 12.3 × 10^3 + 2.34 × 10^3 = (12.3 + 2.34) × 10^3 = 14.64 × 10^3 = 1.464 × 10^4 eg 9.83 × 10^4 + 2.7 × 10^3 = 98.3 × 10^3 + 2.7 × 10^3 = (98.3 + 2.7) × 10^3 = 101 × 10^3 = 1.03 × 10^5 eg 1.05 × 10^4 - 2.7 × 10^3 = 10.5 × 10^3 - 2.7 × 10^3 = (10.5 - 2.7) × 10^3 = 7.8 × 10^3 To multiply and divide: 1) multiply/divide the mantissas; 2) add/subtract the powers in the exponents; 3) Adjust the result back to proper scientific notation if necessary. eg 1.23 × 10^4 × 2.34 × 10^3 = (1.23 × 2.34) × 10^(4 + 3) = 2.8782 × 10^7 eg 9.83 × 10^4 × 2.7 × 10^-3 = (9.83 × 2.7) × 10^(4 + -3) = 26.541 × 10^1 = 2.6541 × 10^2 eg 1.05 × 10^5 ÷ 2.3 × 10^3 = (1.05 ÷ 2.3) × 10^(5 - 3) ≈ 0.4565 × 10^2 = 4.565 × 10^1 eg 1.155 × 10^5 ÷ 2.1 × 10^-3 = (1.155 ÷ 2.1) × 10^(5 - -3) = 0.55 × 10^8 = 5.5 × 10^7
DuckDuckGo
How do you add subtract multiply and divide using scientific notation? - Answers
When dealing with numbers in scientific notation the mantissa (number with the decimal point) and the exponent (the × 10^n bit) are processed separately: To add and subtract: the exponents (powers of 10) MUST be the same: 1) If the exponents are different, adjust the number with the greater power so that the exponents are the same; 2) add/subtract the numbers like normal decimals (with the decimal points aligned), keeping the exponent; 3) Adjust the result back to proper scientific notation if necessary. eg: 1.23 × 10^4 + 2.34 × 10^3 Adjust the 1.23 × 10^4 → 12.3 × 10^3 → 1.23 × 10^4 + 2.34 × 10^3 = 12.3 × 10^3 + 2.34 × 10^3 = (12.3 + 2.34) × 10^3 = 14.64 × 10^3 = 1.464 × 10^4 eg 9.83 × 10^4 + 2.7 × 10^3 = 98.3 × 10^3 + 2.7 × 10^3 = (98.3 + 2.7) × 10^3 = 101 × 10^3 = 1.03 × 10^5 eg 1.05 × 10^4 - 2.7 × 10^3 = 10.5 × 10^3 - 2.7 × 10^3 = (10.5 - 2.7) × 10^3 = 7.8 × 10^3 To multiply and divide: 1) multiply/divide the mantissas; 2) add/subtract the powers in the exponents; 3) Adjust the result back to proper scientific notation if necessary. eg 1.23 × 10^4 × 2.34 × 10^3 = (1.23 × 2.34) × 10^(4 + 3) = 2.8782 × 10^7 eg 9.83 × 10^4 × 2.7 × 10^-3 = (9.83 × 2.7) × 10^(4 + -3) = 26.541 × 10^1 = 2.6541 × 10^2 eg 1.05 × 10^5 ÷ 2.3 × 10^3 = (1.05 ÷ 2.3) × 10^(5 - 3) ≈ 0.4565 × 10^2 = 4.565 × 10^1 eg 1.155 × 10^5 ÷ 2.1 × 10^-3 = (1.155 ÷ 2.1) × 10^(5 - -3) = 0.55 × 10^8 = 5.5 × 10^7
General Meta Tags
22- titleHow do you add subtract multiply and divide using scientific notation? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionWhen dealing with numbers in scientific notation the mantissa (number with the decimal point) and the exponent (the × 10^n bit) are processed separately: To add and subtract: the exponents (powers of 10) MUST be the same: 1) If the exponents are different, adjust the number with the greater power so that the exponents are the same; 2) add/subtract the numbers like normal decimals (with the decimal points aligned), keeping the exponent; 3) Adjust the result back to proper scientific notation if necessary. eg: 1.23 × 10^4 + 2.34 × 10^3 Adjust the 1.23 × 10^4 → 12.3 × 10^3 → 1.23 × 10^4 + 2.34 × 10^3 = 12.3 × 10^3 + 2.34 × 10^3 = (12.3 + 2.34) × 10^3 = 14.64 × 10^3 = 1.464 × 10^4 eg 9.83 × 10^4 + 2.7 × 10^3 = 98.3 × 10^3 + 2.7 × 10^3 = (98.3 + 2.7) × 10^3 = 101 × 10^3 = 1.03 × 10^5 eg 1.05 × 10^4 - 2.7 × 10^3 = 10.5 × 10^3 - 2.7 × 10^3 = (10.5 - 2.7) × 10^3 = 7.8 × 10^3 To multiply and divide: 1) multiply/divide the mantissas; 2) add/subtract the powers in the exponents; 3) Adjust the result back to proper scientific notation if necessary. eg 1.23 × 10^4 × 2.34 × 10^3 = (1.23 × 2.34) × 10^(4 + 3) = 2.8782 × 10^7 eg 9.83 × 10^4 × 2.7 × 10^-3 = (9.83 × 2.7) × 10^(4 + -3) = 26.541 × 10^1 = 2.6541 × 10^2 eg 1.05 × 10^5 ÷ 2.3 × 10^3 = (1.05 ÷ 2.3) × 10^(5 - 3) ≈ 0.4565 × 10^2 = 4.565 × 10^1 eg 1.155 × 10^5 ÷ 2.1 × 10^-3 = (1.155 ÷ 2.1) × 10^(5 - -3) = 0.55 × 10^8 = 5.5 × 10^7
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/other-math/How_do_you_add_subtract_multiply_and_divide_using_scientific_notation
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/other-math/After_2_years_Deion_earned_270_in_simple_interest_from_a_CD_into_which_he_initially_deposited_6000._What_is_the_annual_interest_rate_of_the_CD
- https://math.answers.com/other-math/Can_you_write_an_odd_factor_of_12
- https://math.answers.com/other-math/How_do_you_add_subtract_multiply_and_divide_using_scientific_notation
- https://math.answers.com/other-math/How_do_you_round_38.05837_to_the_nearest_whole_number