math.answers.com/other-math/How_do_you_prove_that_the_square_root_of_thirty_is_irrational
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 35 links tomath.answers.com
- 17 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you prove that the square root of thirty is irrational? - Answers
The proof is by the method of reductio ad absurdum. We start by assuming that sqrt(30) is rational. That means that it can be expressed in the form p/q where p and q are co-prime integers. Thus sqrt(30) = p/q. This can be simplified to 30*q^2 = p^2 Now 2 divides the left hand side (LHS) so it must divide the right hand side (RHS). That is, 2 must divide p^2 and since 2 is a prime, 2 must divide p. That is p = 2*r for some integer r. Then substituting for p gives, 30*q^2 = (2*r)^2 = 4*r^2 Dividing both sides by 2 gives 15*q^2 = 2*r^2. But now 2 divides the RHS so it must divide the LHS. That is, 2 must divide 15*q^2. Since 2 does not divide 15, 2 must divide q^2 and then, since 2 is a prime, 2 must divide q. But then we have 2 dividing p as well as q which contradicts the requirement that p and q are co-prime. The contradiction implies that sqrt(30) cannot be rational.
Bing
How do you prove that the square root of thirty is irrational? - Answers
The proof is by the method of reductio ad absurdum. We start by assuming that sqrt(30) is rational. That means that it can be expressed in the form p/q where p and q are co-prime integers. Thus sqrt(30) = p/q. This can be simplified to 30*q^2 = p^2 Now 2 divides the left hand side (LHS) so it must divide the right hand side (RHS). That is, 2 must divide p^2 and since 2 is a prime, 2 must divide p. That is p = 2*r for some integer r. Then substituting for p gives, 30*q^2 = (2*r)^2 = 4*r^2 Dividing both sides by 2 gives 15*q^2 = 2*r^2. But now 2 divides the RHS so it must divide the LHS. That is, 2 must divide 15*q^2. Since 2 does not divide 15, 2 must divide q^2 and then, since 2 is a prime, 2 must divide q. But then we have 2 dividing p as well as q which contradicts the requirement that p and q are co-prime. The contradiction implies that sqrt(30) cannot be rational.
DuckDuckGo
How do you prove that the square root of thirty is irrational? - Answers
The proof is by the method of reductio ad absurdum. We start by assuming that sqrt(30) is rational. That means that it can be expressed in the form p/q where p and q are co-prime integers. Thus sqrt(30) = p/q. This can be simplified to 30*q^2 = p^2 Now 2 divides the left hand side (LHS) so it must divide the right hand side (RHS). That is, 2 must divide p^2 and since 2 is a prime, 2 must divide p. That is p = 2*r for some integer r. Then substituting for p gives, 30*q^2 = (2*r)^2 = 4*r^2 Dividing both sides by 2 gives 15*q^2 = 2*r^2. But now 2 divides the RHS so it must divide the LHS. That is, 2 must divide 15*q^2. Since 2 does not divide 15, 2 must divide q^2 and then, since 2 is a prime, 2 must divide q. But then we have 2 dividing p as well as q which contradicts the requirement that p and q are co-prime. The contradiction implies that sqrt(30) cannot be rational.
General Meta Tags
22- titleHow do you prove that the square root of thirty is irrational? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe proof is by the method of reductio ad absurdum. We start by assuming that sqrt(30) is rational. That means that it can be expressed in the form p/q where p and q are co-prime integers. Thus sqrt(30) = p/q. This can be simplified to 30*q^2 = p^2 Now 2 divides the left hand side (LHS) so it must divide the right hand side (RHS). That is, 2 must divide p^2 and since 2 is a prime, 2 must divide p. That is p = 2*r for some integer r. Then substituting for p gives, 30*q^2 = (2*r)^2 = 4*r^2 Dividing both sides by 2 gives 15*q^2 = 2*r^2. But now 2 divides the RHS so it must divide the LHS. That is, 2 must divide 15*q^2. Since 2 does not divide 15, 2 must divide q^2 and then, since 2 is a prime, 2 must divide q. But then we have 2 dividing p as well as q which contradicts the requirement that p and q are co-prime. The contradiction implies that sqrt(30) cannot be rational.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/other-math/How_do_you_prove_that_the_square_root_of_thirty_is_irrational
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/other-math/3.25_as_a_fraction
- https://math.answers.com/other-math/Are_miles_per_hour_light_years_per_century_and_kilometers_per_hour_all_units_of_speed
- https://math.answers.com/other-math/Formed_by_two_rays_with_a_common_end_point
- https://math.answers.com/other-math/How_do_you_get_the_y_intercept_without_having_to_draw_a_graph